The Physics of Time Reversal

The Physics of Time Reversal PDF Author: Robert G. Sachs
Publisher: University of Chicago Press
ISBN: 0226733319
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
The notion that fundamental equations governing the motions of physical systems are invariant under the time reversal transformation (T) has been an important, but often subliminal, element in the development of theoretical physics. It serves as a powerful and useful tool in analyzing the structure of matter at all scales, from gases and condensed matter to subnuclear physics and the quantum theory of fields. The assumption of invariance under T was called into question, however, by the 1964 discovery that a closely related assumption, that of CP invariance (where C is charge conjugation and P is space inversion), is violated in the decay of neutral K mesons. In The Physics of Time Reversal, Robert G. Sachs comprehensively treats the role of the transformation T, both as a tool for analyzing the structure of matter and as a field of fundamental research relating to CP violation. For this purpose he reformulates the definitions of T, P, and C so as to avoid subliminal assumptions of invariance. He summarizes the standard phenomenology of CP violation in the K-meson system and addresses the question of the mysterious origin of CP violation. Using simple examples based on the standard quark model, Sachs summarizes and illustrates how these phenomenological methods can be extended to analysis of future experiments on heavy mesons. He notes that his reformulated approach to conventional quantum field theory leads to new questions about the meaning of the transformations in the context of recent theoretical developments such as non-Abelian gauge theories, and he suggests ways in which these questions may lead to new directions of research.

The Physics of Time Reversal

The Physics of Time Reversal PDF Author: Robert G. Sachs
Publisher: University of Chicago Press
ISBN: 0226733319
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
The notion that fundamental equations governing the motions of physical systems are invariant under the time reversal transformation (T) has been an important, but often subliminal, element in the development of theoretical physics. It serves as a powerful and useful tool in analyzing the structure of matter at all scales, from gases and condensed matter to subnuclear physics and the quantum theory of fields. The assumption of invariance under T was called into question, however, by the 1964 discovery that a closely related assumption, that of CP invariance (where C is charge conjugation and P is space inversion), is violated in the decay of neutral K mesons. In The Physics of Time Reversal, Robert G. Sachs comprehensively treats the role of the transformation T, both as a tool for analyzing the structure of matter and as a field of fundamental research relating to CP violation. For this purpose he reformulates the definitions of T, P, and C so as to avoid subliminal assumptions of invariance. He summarizes the standard phenomenology of CP violation in the K-meson system and addresses the question of the mysterious origin of CP violation. Using simple examples based on the standard quark model, Sachs summarizes and illustrates how these phenomenological methods can be extended to analysis of future experiments on heavy mesons. He notes that his reformulated approach to conventional quantum field theory leads to new questions about the meaning of the transformations in the context of recent theoretical developments such as non-Abelian gauge theories, and he suggests ways in which these questions may lead to new directions of research.

The Physics of Time Reversal

The Physics of Time Reversal PDF Author: Robert G. Sachs
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 336

Get Book Here

Book Description
The notion that fundamental equations governing the motions of physical systems are invariant under the time reversal transformation (T) has been an important, but often subliminal, element in the development of theoretical physics. It serves as a powerful and useful tool in analyzing the structure of matter at all scales, from gases and condensed matter to subnuclear physics and the quantum theory of fields. The assumption of invariance under T was called into question, however, by the 1964 discovery that a closely related assumption, that of CP invariance (where C is charge conjugation and P is space inversion), is violated in the decay of neutral K mesons. In The Physics of Time Reversal, Robert G. Sachs comprehensively treats the role of the transformation T, both as a tool for analyzing the structure of matter and as a field of fundamental research relating to CP violation. For this purpose he reformulates the definitions of T, P, and C so as to avoid subliminal assumptions of invariance. He summarizes the standard phenomenology of CP violation in the K-meson system and addresses the question of the mysterious origin of CP violation. Using simple examples based on the standard quark model, Sachs summarizes and illustrates how these phenomenological methods can be extended to analysis of future experiments on heavy mesons. He notes that his reformulated approach to conventional quantum field theory leads to new questions about the meaning of the transformations in the context of recent theoretical developments such as non-Abelian gauge theories, and he suggests ways in which these questions may lead to new directions of research.

The Physical Basis of The Direction of Time

The Physical Basis of The Direction of Time PDF Author: H. Dieter Zeh
Publisher: Springer Science & Business Media
ISBN: 3662027593
Category : Science
Languages : en
Pages : 194

Get Book Here

Book Description
The asymmetry of natural phenomena under time reversal is striking. Here Zehinvestigates the most important classes of physical phenomena that characterize the arrow of time, discussing their interrelations as well as striving to uncover a cosmological common root of the phenomena, such as the time-independent wave function of the universe. The description of irreversible phenomena is shown to be fundamentally "observer-related". Both physicists and philosophers of science who reviewed the first edition considered this book a magnificent survey, a concise, technically sophisticated, up-to-date discussion of the subject, showing fine sensivity to some of the crucial philosophicalsubtleties. This new and expanded edition will be welcomed by both students and specialists.

Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics

Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics PDF Author: C. Altman
Publisher: Springer Science & Business Media
ISBN: 9401579156
Category : Science
Languages : en
Pages : 299

Get Book Here

Book Description
The choice of topics in this book may seem somewhat arbitrary, even though we have attempted to organize them in a logical structure. The contents reflect the path of 'search and discovery' followed by us, on and off, for the in fact last twenty years. In the winter of 1970-71 one of the authors (C. A. ), on sah baticalleave with L. R. O. Storey's research team at the Groupe de Recherches Ionospheriques at Saint-Maur in France, had been finding almost exact symme tries in the computed reflection and transmission matrices for plane-stratified magnetoplasmas when symmetrically related directions of incidence were com pared. At the suggestion of the other author (K. S. , also on leave at the same institute), the complex conjugate wave fields, used to construct the eigenmode amplitudes via the mean Poynting flux densities, were replaced by the adjoint wave fields that would propagate in a medium with transposed constitutve tensors, et voila, a scattering theorem-'reciprocity in k-space'-was found in the computer output. To prove the result analytically one had to investigate the properties of the adjoint Maxwell system, and the two independent proofs that followed, in 1975 and 1979, proceeded respectively via the matrizant method and the thin-layer scattering-matrix method for solving the scattering problem, according to the personal preferences of each of the authors. The proof given in Chap. 2 of this book, based on the hindsight provided by our later results, is simpler and much more concise.

The Routledge Companion to Philosophy of Physics

The Routledge Companion to Philosophy of Physics PDF Author: Eleanor Knox
Publisher: Routledge
ISBN: 1317227131
Category : Philosophy
Languages : en
Pages : 1250

Get Book Here

Book Description
The Routledge Companion to Philosophy of Physics is a comprehensive and authoritative guide to the state of the art in the philosophy of physics. It comprisess 54 self-contained chapters written by leading philosophers of physics at both senior and junior levels, making it the most thorough and detailed volume of its type on the market – nearly every major perspective in the field is represented. The Companion’s 54 chapters are organized into 12 parts. The first seven parts cover all of the major physical theories investigated by philosophers of physics today, and the last five explore key themes that unite the study of these theories. I. Newtonian Mechanics II. Special Relativity III. General Relativity IV. Non-Relativistic Quantum Theory V. Quantum Field Theory VI. Quantum Gravity VII. Statistical Mechanics and Thermodynamics VIII. Explanation IX. Intertheoretic Relations X. Symmetries XI. Metaphysics XII. Cosmology The difficulty level of the chapters has been carefully pitched so as to offer both accessible summaries for those new to philosophy of physics and standard reference points for active researchers on the front lines. An introductory chapter by the editors maps out the field, and each part also begins with a short summary that places the individual chapters in context. The volume will be indispensable to any serious student or scholar of philosophy of physics.

Time and Chance

Time and Chance PDF Author: David Z Albert
Publisher: Harvard University Press
ISBN: 0674020138
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description
This book is an attempt to get to the bottom of an acute and perennial tension between our best scientific pictures of the fundamental physical structure of the world and our everyday empirical experience of it. The trouble is about the direction of time. The situation (very briefly) is that it is a consequence of almost every one of those fundamental scientific pictures--and that it is at the same time radically at odds with our common sense--that whatever can happen can just as naturally happen backwards. Albert provides an unprecedentedly clear, lively, and systematic new account--in the context of a Newtonian-Mechanical picture of the world--of the ultimate origins of the statistical regularities we see around us, of the temporal irreversibility of the Second Law of Thermodynamics, of the asymmetries in our epistemic access to the past and the future, and of our conviction that by acting now we can affect the future but not the past. Then, in the final section of the book, he generalizes the Newtonian picture to the quantum-mechanical case and (most interestingly) suggests a very deep potential connection between the problem of the direction of time and the quantum-mechanical measurement problem. The book aims to be both an original contribution to the present scientific and philosophical understanding of these matters at the most advanced level, and something in the nature of an elementary textbook on the subject accessible to interested high-school students.

Time in Physics

Time in Physics PDF Author: Renato Renner
Publisher: Birkhäuser
ISBN: 3319686550
Category : Science
Languages : en
Pages : 164

Get Book Here

Book Description
One of the most important questions concerning the foundations of physics, especially since the discovery of relativity and quantum theory, is the nature and role of time. In this book we bring together researchers from different areas of physics, mathematics, computer science and philosophy to discuss the role time plays in physics. There have been few books on this topic to date, and two of the key aims of the workshop and this book are to encourage more researchers to explore this area, and to pique students’ interest in the different roles time plays in physics.

Wave Propagation and Time Reversal in Randomly Layered Media

Wave Propagation and Time Reversal in Randomly Layered Media PDF Author: Jean-Pierre Fouque
Publisher: Springer Science & Business Media
ISBN: 0387498087
Category : Science
Languages : en
Pages : 623

Get Book Here

Book Description
The content of this book is multidisciplinary by nature. It uses mathematical tools from the theories of probability and stochastic processes, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of time reversal experiments. It is addressed to a wide audience of graduate students and researchers interested in the intriguing phenomena related to waves propagating in random media. At the end of each chapter there is a section of notes where the authors give references and additional comments on the various results presented in the chapter.

Selected Papers of K.C. Chou

Selected Papers of K.C. Chou PDF Author: Yueliang Wu
Publisher: World Scientific
ISBN: 9814280372
Category : Science
Languages : en
Pages : 1139

Get Book Here

Book Description
Professor Kuang-Chao Chou (also known as Guang-Zhao Zhou) is the former President of Chinese Academy of Sciences. He has been elected as the Academician of Chinese Academy of Sciences, Foreign Associate of the US National Academy of Sciences, Fellow of the Third World Academy of Science, Foreign Member of Soviet (Russian) Academy of Sciences, Czechoslovak Academy of Sciences, Bulgarian Academy of Sciences, Romania Academy of Sciences, Mongolian Academy of Sciences, the European Academy of Arts, Sciences and Humanities, Membre fondateur Academie Francophone d'Ingenieurs.He also served as the director of Institute of Theoretical Physics at the Chinese Academy of Sciences, the Dean of the Science School of Tsinghua University, the Chairman of the China Association for Sciences and Technology, the President of Pacific Science Association, Vice President of Third World Academy of Sciences.?Zhou is a first rate physicist: broad, powerful and very quick in grasping new ideas. His style of doing physics reminds me of that of Landau, Salam, and of Teller.?C N Yang?His published papers have won uniformly high praises by the international scientific community and his articles are always written with depth and elegance.?T D LeeThis volume presents a collection of selected papers written by Prof Chou. The papers are organized into four parts according to the subject of research areas and the language of publishing journals. Part I (in English) and Part III (in Chinese) are papers on field theories, particle physics and nuclear physics, Part II (in English) and Part IV (in Chinese) are papers on statistical physics and condensed matter physics. From the published papers, it illustrates and is clearly evident how Prof Chou was constantly at the frontiers of theoretical physics in various periods and carried out creative research works experimenting with initial ideas and motivations, as well as how he has driven and worked in different key research directions of theoretical physics, all for which he has made significant contributions to various interesting research areas and interdisciplinary fields.

Physical Properties of High Temperature Superconductors V

Physical Properties of High Temperature Superconductors V PDF Author: Donald M. Ginsberg
Publisher: World Scientific
ISBN: 9789810233587
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book Here

Book Description
The publication of Volume V of Physical Properties of High Temperature Superconductors is expected in March, 1996. It will have chapters of interest for both fundamental studies and applied research. The topics discussed are expected to include the electromagnetic response (penetration depth and surface resistance), local lattice distortions, the influence of vortex fluctuations on macroscopic behavior, the properties of superlattices, and the symmetry of the superconducting order parameter.