The Parameterization Method for Invariant Manifolds

The Parameterization Method for Invariant Manifolds PDF Author: Àlex Haro
Publisher: Springer
ISBN: 3319296620
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.

The Parameterization Method for Invariant Manifolds

The Parameterization Method for Invariant Manifolds PDF Author: Àlex Haro
Publisher: Springer
ISBN: 3319296620
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.

Approximation of Stochastic Invariant Manifolds

Approximation of Stochastic Invariant Manifolds PDF Author: Mickaël D. Chekroun
Publisher: Springer
ISBN: 331912496X
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems.

Invariant Manifolds for Physical and Chemical Kinetics

Invariant Manifolds for Physical and Chemical Kinetics PDF Author: Alexander N. Gorban
Publisher: Springer Science & Business Media
ISBN: 9783540226840
Category : Science
Languages : en
Pages : 524

Get Book Here

Book Description
By bringing together various ideas and methods for extracting the slow manifolds, the authors show that it is possible to establish a more macroscopic description in nonequilibrium systems. The book treats slowness as stability. A unifying geometrical viewpoint of the thermodynamics of slow and fast motion enables the development of reduction techniques, both analytical and numerical. Examples considered in the book range from the Boltzmann kinetic equation and hydrodynamics to the Fokker-Planck equations of polymer dynamics and models of chemical kinetics describing oxidation reactions. Special chapters are devoted to model reduction in classical statistical dynamics, natural selection, and exact solutions for slow hydrodynamic manifolds. The book will be a major reference source for both theoretical and applied model reduction. Intended primarily as a postgraduate-level text in nonequilibrium kinetics and model reduction, it will also be valuable to PhD students and researchers in applied mathematics, physics and various fields of engineering.

Model Order Reduction for Design, Analysis and Control of Nonlinear Vibratory Systems

Model Order Reduction for Design, Analysis and Control of Nonlinear Vibratory Systems PDF Author: Cyril Touzé
Publisher: Springer Nature
ISBN: 3031674995
Category :
Languages : en
Pages : 305

Get Book Here

Book Description


Rigorous Numerics in Dynamics

Rigorous Numerics in Dynamics PDF Author: Jan Bouwe van den Berg
Publisher: American Mathematical Soc.
ISBN: 1470428148
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
This volume is based on lectures delivered at the 2016 AMS Short Course “Rigorous Numerics in Dynamics”, held January 4–5, 2016, in Seattle, Washington. Nonlinear dynamics shapes the world around us, from the harmonious movements of celestial bodies, via the swirling motions in fluid flows, to the complicated biochemistry in the living cell. Mathematically these phenomena are modeled by nonlinear dynamical systems, in the form of ODEs, PDEs and delay equations. The presence of nonlinearities complicates the analysis, and the difficulties are even greater for PDEs and delay equations, which are naturally defined on infinite dimensional function spaces. With the availability of powerful computers and sophisticated software, numerical simulations have quickly become the primary tool to study the models. However, while the pace of progress increases, one may ask: just how reliable are our computations? Even for finite dimensional ODEs, this question naturally arises if the system under study is chaotic, as small differences in initial conditions (such as those due to rounding errors in numerical computations) yield wildly diverging outcomes. These issues have motivated the development of the field of rigorous numerics in dynamics, which draws inspiration from ideas in scientific computing, numerical analysis and approximation theory. The articles included in this volume present novel techniques for the rigorous study of the dynamics of maps via the Conley-index theory; periodic orbits of delay differential equations via continuation methods; invariant manifolds and connecting orbits; the dynamics of models with unknown nonlinearities; and bifurcations diagrams.

Differential Geometry Applied To Dynamical Systems (With Cd-rom)

Differential Geometry Applied To Dynamical Systems (With Cd-rom) PDF Author: Jean-marc Ginoux
Publisher: World Scientific
ISBN: 9814467634
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory — or the flow — may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes).In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.

Rigorous Numerics in Dynamics

Rigorous Numerics in Dynamics PDF Author: Jan Bouwe Van
Publisher:
ISBN: 9781470447298
Category : Nonlinear mechanics
Languages : en
Pages : 226

Get Book Here

Book Description
This volume is based on lectures delivered at the 2016 AMS Short Course ""Rigorous Numerics in Dynamics"", held January 4-5, 2016, in Seattle, Washington. Nonlinear dynamics shapes the world around us, from the harmonious movements of celestial bodies, via the swirling motions in fluid flows, to the complicated biochemistry in the living cell. Mathematically these phenomena are modeled by nonlinear dynamical systems, in the form of ODEs, PDEs and delay equations. The presence of nonlinearities complicates the analysis, and the difficulties are even greater for PDEs and delay equations, which a.

Advances in Differential Equations and Applications

Advances in Differential Equations and Applications PDF Author: Fernando Casas
Publisher: Springer
ISBN: 3319069535
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
The book contains a selection of contributions given at the 23th Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA) that took place at Castellon, Spain, in 2013. CEDYA is renowned as the congress of the Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum and meeting point for applied mathematicians in Spain. The papers included in this book have been selected after a thorough refereeing process and provide a good summary of the recent activity developed by different groups working mainly in Spain on applications of mathematics to several fields of science and technology. The purpose is to provide a useful reference of academic and industrial researchers working in the area of numerical analysis and its applications.

Extended Abstracts Spring 2018

Extended Abstracts Spring 2018 PDF Author: Andrei Korobeinikov
Publisher: Springer Nature
ISBN: 3030252612
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This volume contains extended abstracts outlining selected presentations delivered by participants of the joint international multidisciplinary workshop MURPHYS-HSFS-2018 (MUltiRate Processes and HYSteresis; Hysteresis and Slow-Fast Systems), dedicated to the mathematical theory and applications of the multiple scale systems, the systems with hysteresis and general trends in the dynamical systems theory. The workshop was jointly organized by the Centre de Recerca Matemàtica (CRM), Barcelona, and the Collaborative Research Center 910, Berlin, and held at the Centre de Recerca Matemàtica in Bellaterra, Barcelona, from May 28th to June 1st, 2018. This was the ninth workshop continuing a series of biennial meetings started in Ireland in 2002, and the second workshop of this series held at the CRM. Earlier editions of the workshops in this series were held in Cork, Pechs, Suceava, Lutherstadt and Berlin. The collection includes brief research articles reporting new results, descriptions of preliminary work, open problems, and the outcome of work in groups initiated during the workshop. Topics include analysis of hysteresis phenomena, multiple scale systems, self-organizing nonlinear systems, singular perturbations and critical phenomena, as well as applications of the hysteresis and the theory of singularly perturbed systems to fluid dynamics, chemical kinetics, cancer modeling, population modeling, mathematical economics, and control. The book is intended for established researchers, as well as for PhD and postdoctoral students who want to learn more about the latest advances in these highly active research areas.

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations PDF Author: Mitsuhiro T. Nakao
Publisher: Springer Nature
ISBN: 9811376697
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a “theoretical” proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form -∆u=f(x,u,∇u) with Dirichlet boundary conditions. Here, by “verified computation” is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors’ methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.