Author: Margaret Cozzens
Publisher: American Mathematical Soc.
ISBN: 0821883216
Category : Business & Economics
Languages : en
Pages : 355
Book Description
How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.
The Mathematics of Encryption
Author: Margaret Cozzens
Publisher: American Mathematical Soc.
ISBN: 0821883216
Category : Business & Economics
Languages : en
Pages : 355
Book Description
How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.
Publisher: American Mathematical Soc.
ISBN: 0821883216
Category : Business & Economics
Languages : en
Pages : 355
Book Description
How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.
The Mathematics of Secrets
Author: Joshua Holden
Publisher: Princeton University Press
ISBN: 0691183317
Category : Computers
Languages : en
Pages : 390
Book Description
Explaining the mathematics of cryptography The Mathematics of Secrets takes readers on a fascinating tour of the mathematics behind cryptography—the science of sending secret messages. Using a wide range of historical anecdotes and real-world examples, Joshua Holden shows how mathematical principles underpin the ways that different codes and ciphers work. He focuses on both code making and code breaking and discusses most of the ancient and modern ciphers that are currently known. He begins by looking at substitution ciphers, and then discusses how to introduce flexibility and additional notation. Holden goes on to explore polyalphabetic substitution ciphers, transposition ciphers, connections between ciphers and computer encryption, stream ciphers, public-key ciphers, and ciphers involving exponentiation. He concludes by looking at the future of ciphers and where cryptography might be headed. The Mathematics of Secrets reveals the mathematics working stealthily in the science of coded messages. A blog describing new developments and historical discoveries in cryptography related to the material in this book is accessible at http://press.princeton.edu/titles/10826.html.
Publisher: Princeton University Press
ISBN: 0691183317
Category : Computers
Languages : en
Pages : 390
Book Description
Explaining the mathematics of cryptography The Mathematics of Secrets takes readers on a fascinating tour of the mathematics behind cryptography—the science of sending secret messages. Using a wide range of historical anecdotes and real-world examples, Joshua Holden shows how mathematical principles underpin the ways that different codes and ciphers work. He focuses on both code making and code breaking and discusses most of the ancient and modern ciphers that are currently known. He begins by looking at substitution ciphers, and then discusses how to introduce flexibility and additional notation. Holden goes on to explore polyalphabetic substitution ciphers, transposition ciphers, connections between ciphers and computer encryption, stream ciphers, public-key ciphers, and ciphers involving exponentiation. He concludes by looking at the future of ciphers and where cryptography might be headed. The Mathematics of Secrets reveals the mathematics working stealthily in the science of coded messages. A blog describing new developments and historical discoveries in cryptography related to the material in this book is accessible at http://press.princeton.edu/titles/10826.html.
An Introduction to Mathematical Cryptography
Author: Jeffrey Hoffstein
Publisher: Springer
ISBN: 1493917110
Category : Mathematics
Languages : en
Pages : 549
Book Description
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.
Publisher: Springer
ISBN: 1493917110
Category : Mathematics
Languages : en
Pages : 549
Book Description
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.
Mathematics of Public Key Cryptography
Author: Steven D. Galbraith
Publisher: Cambridge University Press
ISBN: 1107013925
Category : Computers
Languages : en
Pages : 631
Book Description
This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.
Publisher: Cambridge University Press
ISBN: 1107013925
Category : Computers
Languages : en
Pages : 631
Book Description
This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.
Modern Cryptography
Author: William Easttom
Publisher: Springer Nature
ISBN: 3031123042
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
This expanded textbook, now in its second edition, is a practical yet in depth guide to cryptography and its principles and practices. Now featuring a new section on quantum resistant cryptography in addition to expanded and revised content throughout, the book continues to place cryptography in real-world security situations using the hands-on information contained throughout the chapters. Prolific author Dr. Chuck Easttom lays out essential math skills and fully explains how to implement cryptographic algorithms in today's data protection landscape. Readers learn and test out how to use ciphers and hashes, generate random keys, handle VPN and Wi-Fi security, and encrypt VoIP, Email, and Web communications. The book also covers cryptanalysis, steganography, and cryptographic backdoors and includes a description of quantum computing and its impact on cryptography. This book is meant for those without a strong mathematics background with only just enough math to understand the algorithms given. The book contains a slide presentation, questions and answers, and exercises throughout. Presents new and updated coverage of cryptography including new content on quantum resistant cryptography; Covers the basic math needed for cryptography - number theory, discrete math, and algebra (abstract and linear); Includes a full suite of classroom materials including exercises, Q&A, and examples.
Publisher: Springer Nature
ISBN: 3031123042
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
This expanded textbook, now in its second edition, is a practical yet in depth guide to cryptography and its principles and practices. Now featuring a new section on quantum resistant cryptography in addition to expanded and revised content throughout, the book continues to place cryptography in real-world security situations using the hands-on information contained throughout the chapters. Prolific author Dr. Chuck Easttom lays out essential math skills and fully explains how to implement cryptographic algorithms in today's data protection landscape. Readers learn and test out how to use ciphers and hashes, generate random keys, handle VPN and Wi-Fi security, and encrypt VoIP, Email, and Web communications. The book also covers cryptanalysis, steganography, and cryptographic backdoors and includes a description of quantum computing and its impact on cryptography. This book is meant for those without a strong mathematics background with only just enough math to understand the algorithms given. The book contains a slide presentation, questions and answers, and exercises throughout. Presents new and updated coverage of cryptography including new content on quantum resistant cryptography; Covers the basic math needed for cryptography - number theory, discrete math, and algebra (abstract and linear); Includes a full suite of classroom materials including exercises, Q&A, and examples.
A Course in Mathematical Cryptography
Author: Gilbert Baumslag
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311038616X
Category : Computers
Languages : en
Pages : 476
Book Description
Cryptography has become essential as bank transactions, credit card infor-mation, contracts, and sensitive medical information are sent through inse-cure channels. This book is concerned with the mathematical, especially algebraic, aspects of cryptography. It grew out of many courses presented by the authors over the past twenty years at various universities and covers a wide range of topics in mathematical cryptography. It is primarily geared towards graduate students and advanced undergraduates in mathematics and computer science, but may also be of interest to researchers in the area. Besides the classical methods of symmetric and private key encryption, the book treats the mathematics of cryptographic protocols and several unique topics such as Group-Based Cryptography Gröbner Basis Methods in Cryptography Lattice-Based Cryptography
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311038616X
Category : Computers
Languages : en
Pages : 476
Book Description
Cryptography has become essential as bank transactions, credit card infor-mation, contracts, and sensitive medical information are sent through inse-cure channels. This book is concerned with the mathematical, especially algebraic, aspects of cryptography. It grew out of many courses presented by the authors over the past twenty years at various universities and covers a wide range of topics in mathematical cryptography. It is primarily geared towards graduate students and advanced undergraduates in mathematics and computer science, but may also be of interest to researchers in the area. Besides the classical methods of symmetric and private key encryption, the book treats the mathematics of cryptographic protocols and several unique topics such as Group-Based Cryptography Gröbner Basis Methods in Cryptography Lattice-Based Cryptography
Serious Cryptography
Author: Jean-Philippe Aumasson
Publisher: No Starch Press
ISBN: 1593278268
Category : Computers
Languages : en
Pages : 313
Book Description
This practical guide to modern encryption breaks down the fundamental mathematical concepts at the heart of cryptography without shying away from meaty discussions of how they work. You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography. You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questions Each chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.
Publisher: No Starch Press
ISBN: 1593278268
Category : Computers
Languages : en
Pages : 313
Book Description
This practical guide to modern encryption breaks down the fundamental mathematical concepts at the heart of cryptography without shying away from meaty discussions of how they work. You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography. You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questions Each chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.
Modern Cryptography: Applied Mathematics for Encryption and Information Security
Author: Chuck Easttom
Publisher: McGraw Hill Professional
ISBN: 1259588092
Category : Computers
Languages : en
Pages : 417
Book Description
This comprehensive guide to modern data encryption makes cryptography accessible to information security professionals of all skill levels—with no math expertise required Cryptography underpins today’s cyber-security; however, few information security professionals have a solid understanding of these encryption methods due to their complex mathematical makeup. Modern Cryptography: Applied Mathematics for Encryption and Information Security leads readers through all aspects of the field, providing a comprehensive overview of cryptography and practical instruction on the latest encryption methods. The book begins with an overview of the evolution of cryptography and moves on to modern protocols with a discussion of hashes, cryptanalysis, and steganography. From there, seasoned security author Chuck Easttom provides readers with the complete picture—full explanations of real-world applications for cryptography along with detailed implementation instructions. Unlike similar titles on the topic, this reference assumes no mathematical expertise—the reader will be exposed to only the formulas and equations needed to master the art of cryptography. Concisely explains complex formulas and equations and makes the math easy Teaches even the information security novice critical encryption skills Written by a globally-recognized security expert who has taught cryptography to various government and civilian groups and organizations around the world
Publisher: McGraw Hill Professional
ISBN: 1259588092
Category : Computers
Languages : en
Pages : 417
Book Description
This comprehensive guide to modern data encryption makes cryptography accessible to information security professionals of all skill levels—with no math expertise required Cryptography underpins today’s cyber-security; however, few information security professionals have a solid understanding of these encryption methods due to their complex mathematical makeup. Modern Cryptography: Applied Mathematics for Encryption and Information Security leads readers through all aspects of the field, providing a comprehensive overview of cryptography and practical instruction on the latest encryption methods. The book begins with an overview of the evolution of cryptography and moves on to modern protocols with a discussion of hashes, cryptanalysis, and steganography. From there, seasoned security author Chuck Easttom provides readers with the complete picture—full explanations of real-world applications for cryptography along with detailed implementation instructions. Unlike similar titles on the topic, this reference assumes no mathematical expertise—the reader will be exposed to only the formulas and equations needed to master the art of cryptography. Concisely explains complex formulas and equations and makes the math easy Teaches even the information security novice critical encryption skills Written by a globally-recognized security expert who has taught cryptography to various government and civilian groups and organizations around the world
Understanding Cryptography
Author: Christof Paar
Publisher: Springer Science & Business Media
ISBN: 3642041019
Category : Computers
Languages : en
Pages : 382
Book Description
Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.
Publisher: Springer Science & Business Media
ISBN: 3642041019
Category : Computers
Languages : en
Pages : 382
Book Description
Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.
Mathematical Ciphers
Author: Anne L. Young
Publisher: American Mathematical Soc.
ISBN: 0821837303
Category : Business & Economics
Languages : en
Pages : 170
Book Description
"A cipher is a scheme for creating coded messages for the secure exchange of information. Throughout history, many different coding schemes have been devised. One of the oldest and simplest mathematical systems was used by Julius Caesar. This is where Mathematical Ciphers begins. Building on that simple system, Young moves on to more complicated schemes, ultimately ending with the RSA cipher, which is used to provide security for the Internet. This book is structured differently from most mathematics texts. It does not begin with a mathematical topic, but rather with a cipher. The mathematics is developed as it is needed; the applications motivate the mathematics. As is typical in mathematics textbooks, most chapters end with exercises. Many of these problems are similar to solved examples and are designed to assist the reader in mastering the basic material. A few of the exercises are one-of-a-kind, intended to challenge the interested reader. Implementing encryption schemes is considerably easier with the use of the computer. For all the ciphers introduced in this book, JavaScript programs are available from the Web. In addition to developing various encryption schemes, this book also introduces the reader to number theory. Here, the study of integers and their properties is placed in the exciting and modern context of cryptology. Mathematical Ciphers can be used as a textbook for an introductory course in mathematics for all majors. The only prerequisite is high school mathematics."--Jacket.
Publisher: American Mathematical Soc.
ISBN: 0821837303
Category : Business & Economics
Languages : en
Pages : 170
Book Description
"A cipher is a scheme for creating coded messages for the secure exchange of information. Throughout history, many different coding schemes have been devised. One of the oldest and simplest mathematical systems was used by Julius Caesar. This is where Mathematical Ciphers begins. Building on that simple system, Young moves on to more complicated schemes, ultimately ending with the RSA cipher, which is used to provide security for the Internet. This book is structured differently from most mathematics texts. It does not begin with a mathematical topic, but rather with a cipher. The mathematics is developed as it is needed; the applications motivate the mathematics. As is typical in mathematics textbooks, most chapters end with exercises. Many of these problems are similar to solved examples and are designed to assist the reader in mastering the basic material. A few of the exercises are one-of-a-kind, intended to challenge the interested reader. Implementing encryption schemes is considerably easier with the use of the computer. For all the ciphers introduced in this book, JavaScript programs are available from the Web. In addition to developing various encryption schemes, this book also introduces the reader to number theory. Here, the study of integers and their properties is placed in the exciting and modern context of cryptology. Mathematical Ciphers can be used as a textbook for an introductory course in mathematics for all majors. The only prerequisite is high school mathematics."--Jacket.