Author: John Crank
Publisher: Oxford University Press
ISBN: 9780198534112
Category : Mathematics
Languages : en
Pages : 428
Book Description
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
The Mathematics of Diffusion
Author: John Crank
Publisher: Oxford University Press
ISBN: 9780198534112
Category : Mathematics
Languages : en
Pages : 428
Book Description
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Publisher: Oxford University Press
ISBN: 9780198534112
Category : Mathematics
Languages : en
Pages : 428
Book Description
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
The Mathematics of Diffusion
Author: Wei-Ming Ni
Publisher: SIAM
ISBN: 9781611971972
Category : Mathematics
Languages : en
Pages : 122
Book Description
Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary conditions, the mechanism of different diffusion rates, and the interaction between diffusion and spatial heterogeneity. The book systematically explores the interplay between different diffusion rates from the viewpoint of pattern formation, particularly Turing's diffusion-driven instability in both homogeneous and heterogeneous environments, and the roles of random diffusion, directed movements, and spatial heterogeneity in the classical Lotka-Volterra competition systems. Interspersed throughout the book are many simple, fundamental, and important open problems for readers to investigate.
Publisher: SIAM
ISBN: 9781611971972
Category : Mathematics
Languages : en
Pages : 122
Book Description
Diffusion has been used extensively in many scientific disciplines to model a wide variety of phenomena. The Mathematics of Diffusion focuses on the qualitative properties of solutions to nonlinear elliptic and parabolic equations and systems in connection with domain geometry, various boundary conditions, the mechanism of different diffusion rates, and the interaction between diffusion and spatial heterogeneity. The book systematically explores the interplay between different diffusion rates from the viewpoint of pattern formation, particularly Turing's diffusion-driven instability in both homogeneous and heterogeneous environments, and the roles of random diffusion, directed movements, and spatial heterogeneity in the classical Lotka-Volterra competition systems. Interspersed throughout the book are many simple, fundamental, and important open problems for readers to investigate.
Polymer Permeability
Author: J. Comyn
Publisher: Springer Science & Business Media
ISBN: 9400948581
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
Polymers are permeable, whilst ceramics, glasses and metals are gener ally impermeable. This may seem a disadvantage in that polymeric containers may allow loss or contamination of their contents and aggressive substances such as water will diffuse into polymeric struc tures such as adhesive joints or fibre-reinforced composites and cause weakening. However, in some cases permeability is an advantage, and one particular area where this is so is in the use of polymers in drug delivery systems. Also, without permeable polymers, we would not enjoy the wide range of dyed fabrics used in clothing and furnishing. The fundamental reason for the permeability of polymers is their relatively high level of molecular motion, a factor which also leads to their high levels of creep in comparison with ceramics, glasses and metals. The aim of this volume is to examine some timely applied aspects of polymer permeability. In the first chapter basic issues in the mathema tics of diffusion are introduced, and this is followed by two chapters where the fundamental aspects of diffusion in polymers are presented. The following chapters, then, each examine some area of applied science where permeability is a key issue. Each chapter is reasonably self-contained and intended to be informative without frequent outside reference. This inevitably leads to some repetition, but it is hoped that this is not excessive.
Publisher: Springer Science & Business Media
ISBN: 9400948581
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
Polymers are permeable, whilst ceramics, glasses and metals are gener ally impermeable. This may seem a disadvantage in that polymeric containers may allow loss or contamination of their contents and aggressive substances such as water will diffuse into polymeric struc tures such as adhesive joints or fibre-reinforced composites and cause weakening. However, in some cases permeability is an advantage, and one particular area where this is so is in the use of polymers in drug delivery systems. Also, without permeable polymers, we would not enjoy the wide range of dyed fabrics used in clothing and furnishing. The fundamental reason for the permeability of polymers is their relatively high level of molecular motion, a factor which also leads to their high levels of creep in comparison with ceramics, glasses and metals. The aim of this volume is to examine some timely applied aspects of polymer permeability. In the first chapter basic issues in the mathema tics of diffusion are introduced, and this is followed by two chapters where the fundamental aspects of diffusion in polymers are presented. The following chapters, then, each examine some area of applied science where permeability is a key issue. Each chapter is reasonably self-contained and intended to be informative without frequent outside reference. This inevitably leads to some repetition, but it is hoped that this is not excessive.
Schrödinger Equations and Diffusion Theory
Author: M. Nagasawa
Publisher: Birkhäuser
ISBN: 3034885687
Category : Mathematics
Languages : en
Pages : 335
Book Description
Schrödinger Equations and Diffusion Theory addresses the question "What is the Schrödinger equation?" in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles. The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations. The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics. The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level.
Publisher: Birkhäuser
ISBN: 3034885687
Category : Mathematics
Languages : en
Pages : 335
Book Description
Schrödinger Equations and Diffusion Theory addresses the question "What is the Schrödinger equation?" in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles. The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations. The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics. The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level.
Revival: Numerical Solution Of Convection-Diffusion Problems (1996)
Author: K.W. Morton
Publisher: CRC Press
ISBN: 1351359665
Category : Mathematics
Languages : en
Pages : 288
Book Description
Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics.
Publisher: CRC Press
ISBN: 1351359665
Category : Mathematics
Languages : en
Pages : 288
Book Description
Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics.
Diffusion Processes and their Sample Paths
Author: Kiyosi Itô
Publisher: Springer Science & Business Media
ISBN: 3642620256
Category : Mathematics
Languages : en
Pages : 341
Book Description
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
Publisher: Springer Science & Business Media
ISBN: 3642620256
Category : Mathematics
Languages : en
Pages : 341
Book Description
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
Growth and Diffusion Phenomena
Author: Robert B. Banks
Publisher: Springer Science & Business Media
ISBN: 3662030527
Category : Science
Languages : en
Pages : 465
Book Description
Diffusion and growth phenomena abound in the real world surrounding us. Someexamples: growth of the world's population, growth rates of humans, public interest in news events, growth and decline of central city populations, pollution of rivers, adoption of agricultural innovations, and spreading of epidemics and migration of insects. These and numerous other phenomena are illustrations of typical growth and diffusion problems confronted in many branches of the physical, biological and social sciences as well as in various areas of agriculture, business, education, engineering medicine and public health. The book presents a large number of mathematical models to provide frameworks forthe analysis and display of many of these. The models developed and utilizedcommence with relatively simple exponential, logistic and normal distribution functions. Considerable attention is given to time dependent growth coefficients and carrying capacities. The topics of discrete and distributed time delays, spatial-temporal diffusion and diffusion with reaction are examined. Throughout the book there are a great many numerical examples. In addition and most importantly, there are more than 50 in-depth "illustrations" of the application of a particular framework ormodel based on real world problems. These examples provide the reader with an appreciation of the intrinsic nature of the phenomena involved. They address mainly readers from the physical, biological, and social sciences, as the only mathematical background assumed is elementary calculus. Methods are developed as required, and the reader can thus acquire useful tools for planning, analyzing, designing,and evaluating studies of growth transfer and diffusion phenomena. The book draws on the author's own hands-on experience in problems of environmental diffusion and dispersion, as well as in technology transfer and innovation diffusion.
Publisher: Springer Science & Business Media
ISBN: 3662030527
Category : Science
Languages : en
Pages : 465
Book Description
Diffusion and growth phenomena abound in the real world surrounding us. Someexamples: growth of the world's population, growth rates of humans, public interest in news events, growth and decline of central city populations, pollution of rivers, adoption of agricultural innovations, and spreading of epidemics and migration of insects. These and numerous other phenomena are illustrations of typical growth and diffusion problems confronted in many branches of the physical, biological and social sciences as well as in various areas of agriculture, business, education, engineering medicine and public health. The book presents a large number of mathematical models to provide frameworks forthe analysis and display of many of these. The models developed and utilizedcommence with relatively simple exponential, logistic and normal distribution functions. Considerable attention is given to time dependent growth coefficients and carrying capacities. The topics of discrete and distributed time delays, spatial-temporal diffusion and diffusion with reaction are examined. Throughout the book there are a great many numerical examples. In addition and most importantly, there are more than 50 in-depth "illustrations" of the application of a particular framework ormodel based on real world problems. These examples provide the reader with an appreciation of the intrinsic nature of the phenomena involved. They address mainly readers from the physical, biological, and social sciences, as the only mathematical background assumed is elementary calculus. Methods are developed as required, and the reader can thus acquire useful tools for planning, analyzing, designing,and evaluating studies of growth transfer and diffusion phenomena. The book draws on the author's own hands-on experience in problems of environmental diffusion and dispersion, as well as in technology transfer and innovation diffusion.
Transient Techniques in Electrochemistry
Author: Digby Macdonald
Publisher: Springer Science & Business Media
ISBN: 1461341450
Category : Science
Languages : en
Pages : 336
Book Description
The study of electrochemical reactions by relaxation or transient techniques has expanded rapidly over the last two decades. The impetus for the develop ment of these techniques has been the desire to obtain quantitative data on the rates of "fast" electrochemical processes, including those coupled to homogeneous chemical reactions in solution. This has necessarily meant the development of techniques that are capable of delineating the effects of mass transport and charge transfer at very short times. The purpose of this book is to describe how the various transient techniques may be used to obtain the desired information. Emphasis is placed upon the detailed mathematical development of the subject, since this aspect is the most frequently ignored in other texts in this field. In any relaxation or transient technique for the study of rate processes, it is necessary to disturb the reaction from equilibrium or the steady state by applying a perturbing impulse to the system. The system is then allowed to relax to a new equilibrium or steady-state position, and. the transient (i. e. , the response as a function of time) is analyzed to extract the desired kinetic information. In electrochemical studies the heterogeneous rate constants are, in general, dependent upon the potential difference across the interface, so that the perturbing impulse frequently takes the form of a known variation in potential as a function of time.
Publisher: Springer Science & Business Media
ISBN: 1461341450
Category : Science
Languages : en
Pages : 336
Book Description
The study of electrochemical reactions by relaxation or transient techniques has expanded rapidly over the last two decades. The impetus for the develop ment of these techniques has been the desire to obtain quantitative data on the rates of "fast" electrochemical processes, including those coupled to homogeneous chemical reactions in solution. This has necessarily meant the development of techniques that are capable of delineating the effects of mass transport and charge transfer at very short times. The purpose of this book is to describe how the various transient techniques may be used to obtain the desired information. Emphasis is placed upon the detailed mathematical development of the subject, since this aspect is the most frequently ignored in other texts in this field. In any relaxation or transient technique for the study of rate processes, it is necessary to disturb the reaction from equilibrium or the steady state by applying a perturbing impulse to the system. The system is then allowed to relax to a new equilibrium or steady-state position, and. the transient (i. e. , the response as a function of time) is analyzed to extract the desired kinetic information. In electrochemical studies the heterogeneous rate constants are, in general, dependent upon the potential difference across the interface, so that the perturbing impulse frequently takes the form of a known variation in potential as a function of time.
Introduction to Diffusion Tensor Imaging
Author: Susumu Mori
Publisher: Academic Press
ISBN: 0123984076
Category : Medical
Languages : en
Pages : 141
Book Description
The concepts behind diffusion tensor imaging (DTI) are commonly difficult to grasp, even for magnetic resonance physicists. To make matters worse, a many more complex higher-order methods have been proposed over the last few years to overcome the now well-known deficiencies of DTI. In Introduction to Diffusion Tensor Imaging: And Higher Order Models, these concepts are explained through extensive use of illustrations rather than equations to help readers gain a more intuitive understanding of the inner workings of these techniques. Emphasis is placed on the interpretation of DTI images and tractography results, the design of experiments, and the types of application studies that can be undertaken. Diffusion MRI is a very active field of research, and theories and techniques are constantly evolving. To make sense of this constantly shifting landscape, there is a need for a textbook that explains the concepts behind how these techniques work in a way that is easy and intuitive to understand—Introduction to Diffusion Tensor Imaging fills this gap. - Extensive use of illustrations to explain the concepts of diffusion tensor imaging and related methods - Easy to understand, even without a background in physics - Includes sections on image interpretation, experimental design, and applications - Up-to-date information on more recent higher-order models, which are increasingly being used for clinical applications
Publisher: Academic Press
ISBN: 0123984076
Category : Medical
Languages : en
Pages : 141
Book Description
The concepts behind diffusion tensor imaging (DTI) are commonly difficult to grasp, even for magnetic resonance physicists. To make matters worse, a many more complex higher-order methods have been proposed over the last few years to overcome the now well-known deficiencies of DTI. In Introduction to Diffusion Tensor Imaging: And Higher Order Models, these concepts are explained through extensive use of illustrations rather than equations to help readers gain a more intuitive understanding of the inner workings of these techniques. Emphasis is placed on the interpretation of DTI images and tractography results, the design of experiments, and the types of application studies that can be undertaken. Diffusion MRI is a very active field of research, and theories and techniques are constantly evolving. To make sense of this constantly shifting landscape, there is a need for a textbook that explains the concepts behind how these techniques work in a way that is easy and intuitive to understand—Introduction to Diffusion Tensor Imaging fills this gap. - Extensive use of illustrations to explain the concepts of diffusion tensor imaging and related methods - Easy to understand, even without a background in physics - Includes sections on image interpretation, experimental design, and applications - Up-to-date information on more recent higher-order models, which are increasingly being used for clinical applications
Smoothing and Decay Estimates for Nonlinear Diffusion Equations
Author: Juan Luis Vázquez
Publisher: Oxford University Press, USA
ISBN: 0199202974
Category : Mathematics
Languages : en
Pages : 249
Book Description
This text is concerned with quantitative aspects of the theory of nonlinear diffusion equations, whichappear as mathematical models in different branches of Physics, Chemistry, Biology and Engineering.
Publisher: Oxford University Press, USA
ISBN: 0199202974
Category : Mathematics
Languages : en
Pages : 249
Book Description
This text is concerned with quantitative aspects of the theory of nonlinear diffusion equations, whichappear as mathematical models in different branches of Physics, Chemistry, Biology and Engineering.