The Mathematical Structure of Classical and Relativistic Physics

The Mathematical Structure of Classical and Relativistic Physics PDF Author: Enzo Tonti
Publisher: Springer Science & Business Media
ISBN: 1461474221
Category : Science
Languages : en
Pages : 537

Get Book Here

Book Description
The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics. The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories. Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.

The Mathematical Structure of Classical and Relativistic Physics

The Mathematical Structure of Classical and Relativistic Physics PDF Author: Enzo Tonti
Publisher: Springer Science & Business Media
ISBN: 1461474221
Category : Science
Languages : en
Pages : 537

Get Book Here

Book Description
The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics. The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories. Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics PDF Author: Hartmut Pilkuhn
Publisher: Springer Science & Business Media
ISBN: 366205275X
Category : Science
Languages : en
Pages : 244

Get Book Here

Book Description
In this book, quantum mechanics is developed from the outset on a relativistic basis, using the superposition principle, Lorentz invariance and gauge invariance. Nonrelativistic quantum mechanics appears as a special case, and classical relativistic mechanics as another one. These special cases are important for giving plausible names to operators, for example "orbital angular momentum", "spin" or "magnetic moment". A subject which is treated for the first time in this book is the theory of binaries in terms of differential equations which have the mathematical structure of the corresponding one-body equations (Klein--Gordon for two spin- less particles, Dirac for two spinor particles).

Structure and Interpretation of Classical Mechanics, second edition

Structure and Interpretation of Classical Mechanics, second edition PDF Author: Gerald Jay Sussman
Publisher: MIT Press
ISBN: 0262028964
Category : Science
Languages : en
Pages : 580

Get Book Here

Book Description
The new edition of a classic text that concentrates on developing general methods for studying the behavior of classical systems, with extensive use of computation. We now know that there is much more to classical mechanics than previously suspected. Derivations of the equations of motion, the focus of traditional presentations of mechanics, are just the beginning. This innovative textbook, now in its second edition, concentrates on developing general methods for studying the behavior of classical systems, whether or not they have a symbolic solution. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic. It weaves recent discoveries in nonlinear dynamics throughout the text, rather than presenting them as an afterthought. Explorations of phenomena such as the transition to chaos, nonlinear resonances, and resonance overlap to help the student develop appropriate analytic tools for understanding. The book uses computation to constrain notation, to capture and formalize methods, and for simulation and symbolic analysis. The requirement that the computer be able to interpret any expression provides the student with strict and immediate feedback about whether an expression is correctly formulated. This second edition has been updated throughout, with revisions that reflect insights gained by the authors from using the text every year at MIT. In addition, because of substantial software improvements, this edition provides algebraic proofs of more generality than those in the previous edition; this improvement permeates the new edition.

Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description


Mathematical Physics: Classical Mechanics

Mathematical Physics: Classical Mechanics PDF Author: Andreas Knauf
Publisher: Springer
ISBN: 3662557746
Category : Science
Languages : en
Pages : 683

Get Book Here

Book Description
As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.

Relativity on Curved Manifolds

Relativity on Curved Manifolds PDF Author: F. de Felice
Publisher: Cambridge University Press
ISBN: 9780521429085
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
This is a self-contained exposition of general relativity with emphasis given to tetrad and spinor structures and physical measurement on curved manifolds.

Geometric Formulation of Classical and Quantum Mechanics

Geometric Formulation of Classical and Quantum Mechanics PDF Author: G. Giachetta
Publisher: World Scientific
ISBN: 9814313726
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.

Electrodynamics and Classical Theory of Fields and Particles

Electrodynamics and Classical Theory of Fields and Particles PDF Author: A. O. Barut
Publisher: Courier Corporation
ISBN: 0486158713
Category : Science
Languages : en
Pages : 258

Get Book Here

Book Description
Comprehensive graduate-level text by a distinguished theoretical physicist reveals the classical underpinnings of modern quantum field theory. Topics include space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and more. 1964 edition.

The Mathematical Structure of Stable Physical Systems

The Mathematical Structure of Stable Physical Systems PDF Author: Dr. Martin Concoyle & G.P. Coatmundi
Publisher: Trafford Publishing
ISBN: 1490723641
Category : Education
Languages : en
Pages : 703

Get Book Here

Book Description
This book is an introduction to the simple math patterns used to describe fundamental, stable spectral-orbital physical systems (represented as discrete hyperbolic shapes), the containment set has many-dimensions, and these dimensions possess macroscopic geometric properties (which are also discrete hyperbolic shapes). Thus, it is a description which transcends the idea of materialism (ie it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy, and which has a natural structure for memory, where this construct is made in relation to the main property of the description being, in fact, the spectral properties of both material systems and of the metric-spaces which contain the material systems, where material is simply a lower dimension metric-space, and where both material-components and metric-spaces are in resonance with the containing space. Partial differential equations are defined on the many metric-spaces of this description, but their main function is to act on either the, usually, unimportant free-material components (to most often cause non-linear dynamics) or to perturb the orbits of the, quite often condensed, material trapped by (or within) the stable orbits of a very stable hyperbolic metric-space shape.

Rotating Relativistic Stars

Rotating Relativistic Stars PDF Author: John L. Friedman
Publisher: Cambridge University Press
ISBN: 1107310601
Category : Science
Languages : en
Pages : 435

Get Book Here

Book Description
The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.