The Linearized Theory of Elasticity

The Linearized Theory of Elasticity PDF Author: William S. Slaughter
Publisher: Springer Science & Business Media
ISBN: 1461200938
Category : Technology & Engineering
Languages : en
Pages : 557

Get Book Here

Book Description
This book is derived from notes used in teaching a first-year graduate-level course in elasticity in the Department of Mechanical Engineering at the University of Pittsburgh. This is a modern treatment of the linearized theory of elasticity, which is presented as a specialization of the general theory of continuum mechanics. It includes a comprehensive introduction to tensor analysis, a rigorous development of the governing field equations with an emphasis on recognizing the assumptions and approximations in herent in the linearized theory, specification of boundary conditions, and a survey of solution methods for important classes of problems. Two- and three-dimensional problems, torsion of noncircular cylinders, variational methods, and complex variable methods are covered. This book is intended as the text for a first-year graduate course in me chanical or civil engineering. Sufficient depth is provided such that the text can be used without a prerequisite course in continuum mechanics, and the material is presented in such a way as to prepare students for subsequent courses in nonlinear elasticity, inelasticity, and fracture mechanics. Alter natively, for a course that is preceded by a course in continuum mechanics, there is enough additional content for a full semester of linearized elasticity.

The Linearized Theory of Elasticity

The Linearized Theory of Elasticity PDF Author: William S. Slaughter
Publisher: Springer Science & Business Media
ISBN: 9780817641177
Category : Mathematics
Languages : en
Pages : 588

Get Book Here

Book Description
The mathematical framework behind the theory is developed in detail, with the assumptions behind the eventual linearization made clear, so that the reader will be adequately prepared for further studies in continuum mechanics, nonlinear elasticity, inelasticity, fracture mechanics and/or finite elements. Prior to linearization, configurations and general measure of strain and stress are discussed. A modern treatment of the theory of tensors and tensor calculus is used. General curvilinear coordinates are described in an appendix.

The Linearized Theory of Elasticity

The Linearized Theory of Elasticity PDF Author: William S. Slaughter
Publisher: Springer Science & Business Media
ISBN: 1461200938
Category : Technology & Engineering
Languages : en
Pages : 557

Get Book Here

Book Description
This book is derived from notes used in teaching a first-year graduate-level course in elasticity in the Department of Mechanical Engineering at the University of Pittsburgh. This is a modern treatment of the linearized theory of elasticity, which is presented as a specialization of the general theory of continuum mechanics. It includes a comprehensive introduction to tensor analysis, a rigorous development of the governing field equations with an emphasis on recognizing the assumptions and approximations in herent in the linearized theory, specification of boundary conditions, and a survey of solution methods for important classes of problems. Two- and three-dimensional problems, torsion of noncircular cylinders, variational methods, and complex variable methods are covered. This book is intended as the text for a first-year graduate course in me chanical or civil engineering. Sufficient depth is provided such that the text can be used without a prerequisite course in continuum mechanics, and the material is presented in such a way as to prepare students for subsequent courses in nonlinear elasticity, inelasticity, and fracture mechanics. Alter natively, for a course that is preceded by a course in continuum mechanics, there is enough additional content for a full semester of linearized elasticity.

The Linearized Theory of Elasticity

The Linearized Theory of Elasticity PDF Author: William S. Slaughter
Publisher: Springer Science & Business Media
ISBN:
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
The mathematical framework behind the theory is developed in detail, with the assumptions behind the eventual linearization made clear, so that the reader will be adequately prepared for further studies in continuum mechanics, nonlinear elasticity, inelasticity, fracture mechanics and/or finite elements. Prior to linearization, configurations and general measure of strain and stress are discussed. A modern treatment of the theory of tensors and tensor calculus is used. General curvilinear coordinates are described in an appendix.

Nonlinear Theory of Elasticity

Nonlinear Theory of Elasticity PDF Author: Larry Alan Taber
Publisher: World Scientific
ISBN: 9812387358
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
Soft biological tissues often undergo large (nearly) elastic deformations that can be analyzed using the nonlinear theory of elasticity. Because of the varied approaches to nonlinear elasticity in the literature, some aspects of the subject may be difficult to appreciate. This book attempts to clarify and unify those treatments, illustrating the advantages and disadvantages of each through various examples in the mechanics of soft tissues. Applications include muscle, arteries, the heart, and embryonic tissues.

Linear Theories of Elasticity and Thermoelasticity

Linear Theories of Elasticity and Thermoelasticity PDF Author: Clifford Truesdell
Publisher: Springer
ISBN: 3662397765
Category : Technology & Engineering
Languages : en
Pages : 755

Get Book Here

Book Description


Theory of Elasticity

Theory of Elasticity PDF Author: A.I. Lurie
Publisher: Springer Science & Business Media
ISBN: 3540264558
Category : Technology & Engineering
Languages : en
Pages : 1036

Get Book Here

Book Description
The classical theory of elasticity maintains a place of honour in the science ofthe behaviour ofsolids. Its basic definitions are general for all branches of this science, whilst the methods forstating and solving these problems serve as examples of its application. The theories of plasticity, creep, viscoelas ticity, and failure of solids do not adequately encompass the significance of the methods of the theory of elasticity for substantiating approaches for the calculation of stresses in structures and machines. These approaches constitute essential contributions in the sciences of material resistance and structural mechanics. The first two chapters form Part I of this book and are devoted to the basic definitions ofcontinuum mechanics; namely stress tensors (Chapter 1) and strain tensors (Chapter 2). The necessity to distinguish between initial and actual states in the nonlinear theory does not allow one to be content with considering a single strain measure. For this reason, it is expedient to introduce more rigorous tensors to describe the stress-strain state. These are considered in Section 1.3 for which the study of Sections 2.3-2.5 should precede. The mastering of the content of these sections can be postponed until the nonlinear theory is studied in Chapters 8 and 9.

Introduction to Mathematical Elasticity

Introduction to Mathematical Elasticity PDF Author: L. P. Lebedev
Publisher: World Scientific
ISBN: 9814273724
Category : Technology & Engineering
Languages : en
Pages : 317

Get Book Here

Book Description
This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability.Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.

Mathematical Theory of Elastic Structures

Mathematical Theory of Elastic Structures PDF Author: Kang Feng
Publisher: Springer Science & Business Media
ISBN: 3662032864
Category : Science
Languages : en
Pages : 407

Get Book Here

Book Description
Elasticity theory is a classical discipline. The mathematical theory of elasticity in mechanics, especially the linearized theory, is quite mature, and is one of the foundations of several engineering sciences. In the last twenty years, there has been significant progress in several areas closely related to this classical field, this applies in particular to the following two areas. First, progress has been made in numerical methods, especially the development of the finite element method. The finite element method, which was independently created and developed in different ways by sci entists both in China and in the West, is a kind of systematic and modern numerical method for solving partial differential equations, especially el liptic equations. Experience has shown that the finite element method is efficient enough to solve problems in an extremely wide range of applica tions of elastic mechanics. In particular, the finite element method is very suitable for highly complicated problems. One of the authors (Feng) of this book had the good fortune to participate in the work of creating and establishing the theoretical basis of the finite element method. He thought in the early sixties that the method could be used to solve computational problems of solid mechanics by computers. Later practice justified and still continues to justify this point of view. The authors believe that it is now time to include the finite element method as an important part of the content of a textbook of modern elastic mechanics.

Three-Dimensional Elasticity

Three-Dimensional Elasticity PDF Author:
Publisher: Elsevier
ISBN: 0080875416
Category : Technology & Engineering
Languages : en
Pages : 495

Get Book Here

Book Description
This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.

Elasticity

Elasticity PDF Author: Martin H. Sadd
Publisher: Elsevier
ISBN: 008047747X
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of