The Interpretation of Ionic Conductivity in Liquids

The Interpretation of Ionic Conductivity in Liquids PDF Author: Stuart I. Smedley
Publisher: Springer Science & Business Media
ISBN: 1468438182
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
The phenomenon of electrical conductance in liquids is of great impor tance to the technologist, as well as to the theoretical scientist. A glance at Chemical Abstracts will reveal that electrical conductivity can be used as an analytical tool for such diverse substances as concrete and suntan lotion as well as a tool for elucidating the dynamics of molecules in simple liquids. It is a phenomenon that is relatively easily measured, which explains the great diversity of conductance studies that span a range of experimental conditions unequalled in the study of nonequilibrium phenomena. It is clearly impossible for one book, notwithstanding the ability of one author, to cope with so much information or to cover even a significant fraction of the literature on this subject. However, I believe it is possible to bring together in one monograph the mainstream ideas on the interpretation of the phenomenon in relatively simple systems. It is hoped that this book will achieve this result and will provide a concise and coherent account of the interpretation of ionic conductivity in dilute electrolyte solutions, concentrated solutions, low-temperature or glass-forming molten salts, ionic melts, molecular fluids, and fluids of geological and industrial inter est. Most of these topics have been discussed in other books and review articles, but to the best of my knowledge they have not been gathered together in a single monograph.

The Interpretation of Ionic Conductivity in Liquids

The Interpretation of Ionic Conductivity in Liquids PDF Author: Stuart I. Smedley
Publisher: Springer Science & Business Media
ISBN: 1468438182
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
The phenomenon of electrical conductance in liquids is of great impor tance to the technologist, as well as to the theoretical scientist. A glance at Chemical Abstracts will reveal that electrical conductivity can be used as an analytical tool for such diverse substances as concrete and suntan lotion as well as a tool for elucidating the dynamics of molecules in simple liquids. It is a phenomenon that is relatively easily measured, which explains the great diversity of conductance studies that span a range of experimental conditions unequalled in the study of nonequilibrium phenomena. It is clearly impossible for one book, notwithstanding the ability of one author, to cope with so much information or to cover even a significant fraction of the literature on this subject. However, I believe it is possible to bring together in one monograph the mainstream ideas on the interpretation of the phenomenon in relatively simple systems. It is hoped that this book will achieve this result and will provide a concise and coherent account of the interpretation of ionic conductivity in dilute electrolyte solutions, concentrated solutions, low-temperature or glass-forming molten salts, ionic melts, molecular fluids, and fluids of geological and industrial inter est. Most of these topics have been discussed in other books and review articles, but to the best of my knowledge they have not been gathered together in a single monograph.

Molten Salts and Ionic Liquids 16

Molten Salts and Ionic Liquids 16 PDF Author: D. Fox
Publisher: The Electrochemical Society
ISBN: 1566777348
Category : Science
Languages : en
Pages : 615

Get Book Here

Book Description
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Molten Salts and Ionic Liquids 16¿, held during the PRiME 2008 joint international meeting of The Electrochemical Society and The Electrochemical Society of Japan, with the technical cosponsorship of the Japan Society of Applied Physics, the Korean Electrochemical Society, the Electrochemistry Division of the Royal Australian Chemical Institute, and the Chinese Society of Electrochemistry. This meeting was held in Honolulu, Hawaii, from October 12 to 17, 2008.

The Analysis of Nuclear Materials and Their Environments

The Analysis of Nuclear Materials and Their Environments PDF Author: Claude André Degueldre
Publisher: Springer
ISBN: 331958006X
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
This book provides an overview of passive and interactive analytical techniques for nuclear materials. The book aims to update readers on new techniques available and provide an introduction for those who are new to the topic or are looking to move into actinides and nuclear materials science. The characterization of actinide species and radioactive materials is vital for understanding how these elements and radioactive isotopes are formed and behave and how these materials can be improved. The analysis of the actinides or radioactive materials goes beyond spent fuel science to the applicable complete fuel cycle and including analysis of reactor materials.

Dynamics of Glassy, Crystalline and Liquid Ionic Conductors

Dynamics of Glassy, Crystalline and Liquid Ionic Conductors PDF Author: Junko Habasaki
Publisher: Springer
ISBN: 3319423916
Category : Science
Languages : en
Pages : 614

Get Book Here

Book Description
This book discusses the physics of the dynamics of ions in various ionically conducting materials, and applications including electrical energy generation and storage. The experimental techniques for measurements and characterization, molecular dynamics simulations, the theories of ion dynamics, and applications are all addressed by the authors, who are experts in their fields. The experimental techniques of measurement and characterization of dynamics of ions in glassy, crystalline, and liquid ionic conductors are introduced with the dual purpose of introducing the reader to the experimental activities of the field, and preparing the reader to understand the physical quantities derived from experiments. These experimental techniques include calorimetry, conductivity relaxation, nuclear magnetic resonance, light scattering, neutron scattering, and others. Methods of molecular dynamics simulations are introduced to teach the reader to utilize the technique for practical applications to specific problems. The results elucidate the dynamics of ions on some issues that are not accessible by experiments. The properties of ion dynamics in glassy, crystalline and liquid ionic conductors brought forth by experiments and simulations are shown to be universal, i.e. independent of physical and chemical structure of the ionic conductor as long as ion-ion interaction is the dominant factor. Moreover these universal properties of ion dynamics are shown to be isomorphic to other complex interacting systems including the large class of glass-forming materials with or without ionic conductivity.By covering the basic concepts, theories/models, experimental techniques and data, molecular dynamics simulations, and relating them together, Dynamics of Glassy, Crystalline and Liquid Ionic Conductors will be of great interest to many in basic and applied research areas from the broad and diverse communities of condensed matter physicists, chemists, materials scientists and engineers. The book also provides the fundamentals for an introduction to the field and it is written in such a way that can be used for teaching courses either at the undergraduate or graduate level in academic institutions.

Fundamentals of Geoenvironmental Engineering

Fundamentals of Geoenvironmental Engineering PDF Author: Abdel-Mohsen O. Mohamed
Publisher: Butterworth-Heinemann
ISBN: 0128051450
Category : Technology & Engineering
Languages : en
Pages : 710

Get Book Here

Book Description
Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport examines soil-water-pollutant interaction, including physico-chemical processes that occur when soil is exposed to various contaminants. Soil characteristics relevant to remedial techniques are explored, providing foundations for the correct process selection. Built upon the authors' extensive experience in research and practice, the book updates and expands the content to include current processes and pollutants. The book discusses propagation of soil pollution and soil characteristics relevant to remedial techniques. Practicing geotechnical and environmental engineers can apply the theory and case studies in the book directly to current projects. The book first discusses the stages of economic development and their connections to the sustainability of the environment. Subsequent chapters cover waste and its management, soil systems, soil-water and soil-pollutant interactions, subsurface transport of pollutants, role of groundwater, nano-, micro- and biologic pollutants, soil characteristics that impact pollution diffusion, and potential remediation processes like mechanical, electric, magnetic, hydraulic and dielectric permittivity of soils. Presents a clear understanding of the propagation of pollutants in soils Identifies the physico-chemical processes in soils Covers emerging pollutants (nano-, micro- and biologic contaminants) Features in-depth coverage of hydraulic, electrical, magnetic and dielectric permittivity characteristics of soils and their impact on remedial technologies

Properties of Ionic Liquids and Ionic Liquid Mixtures

Properties of Ionic Liquids and Ionic Liquid Mixtures PDF Author: Gary Annat
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
While much research into the field of ionic liquids has described applications for which these new and facile materials can be used, the origins of the desirable physical properties (i.e. high ionic conductivity, large electrochemical windows, high thermal stability, etc.), remains subject to empirical understanding and guess-work. The investigation of new salts from the> 1010 possibilities can be cumbersome as time is invested in either a wide range of promising materials that may yield limited success, or through systematic testing of whole families of ionic liquids to find the best performing material. Developing an understanding of the role different ions and functional groups play in the bulk physical properties of an ionic liquid is crucial in guiding future research to uncover modem materials for advanced practical applications. This work first analyses the physical properties of many different ionic liquids to gain insight into the liquid state of pure ionic liquids. Viscosity, ionic conductivity and density data are used to construct Walden Plots, to understand the freedom of movement of ions in the electrolyte, based on the Walden rule that states that the product of molar conductivity and viscosity is constant. It is proposed in this work that the observed deviation from this relationship is influenced by the size of the ions. Based on estimates of ion size using ab initio calculations, new deviations in molar conductivity in the Walden Plot (~W) are determined. Furthermore, using the Nernst-Einstein equation, ionicity values are determined from diffusion NMR analysis. The pure state IS also probed in detail for the ionic liquid trihexyltetradecylphosphonim chloride ([P6,6,6,14](Cl]) using wide angle X-ray scattering coupled with molecular dynamics simulations. Nanometer sized domains are observed in the liquid state, which is correlated by the computer simulations. These domains alternate between polar and non-polar, reflecting aggregation of the charged ions and aggregation of the uncharged alkyl chains on the phosphonium cation. While there are many new ionic liquids to explore, another avenue of research that is beginning to bloom is the study of mixtures of ionic liquids. The most obvious starting point is perhaps the study of ionic liquids combined with molecular solvents, as these latter materials have well documented and accurately measured properties. However, some of the properties that are so heavily sought after in ionic liquids are sacrificed in such mixtures. In contrast, ionic liquids mixed with other ionic liquids offer the possibility of improvement of undesirable properties without the loss of advantageous properties such as negligible volatility. As there is an overwhelmingly large range of ionic liquid in ionic liquid possible combinations, though, a guided and well constructed approach is required to make significant headway in the field. This work presents the study of a group of ionic liquids where the differences in constituent ions are chosen to yield significant information on how different ions interact, while the number of differences is kept to a minimum to avoid too many competing factors. The concept of "simple" mixing, in terms of the properties of ionic liquid mixtures, is clarified first in order to identify any unusual behaviour. Thus, equations for predicting viscosities in mixtures are confirmed, and analogous equations are used to describe molar conductivities. The greatest deviation from simple mixing is observed in mixtures of the N-methyl-N-propylpyrrolidinium ([C3mpyrt]+) cation and the large [P6,6,6,14]+ cation, used with the bis(trifluoromethylsulfonyl)amide ([NTf2]*) anion. These mixtures exhibit an immiscibility window, a lack of crystallisation in single phase mixtures, a large excess molar volume and significant departure from the expected viscosity. It is conjectured that the physical properties of the miscible composition in this mixture is the result of alkyl-rich domains in the liquid state, and that when the composition of [C3mpyr][NTf2] is in the majority these domains cannot stay in solution and force the ionic liquids to separate. In order to accurately perform NMR diffusion analyses of the ionic liquid binary mixtures, the exact procedure for the NMR diffusion experiments needed to be explored and clarified. It is observed that the standard pulse sequence traditionally used for diffusion experiments, the Hahn-Echo pulse sequence, yields anomalous results in high viscosity ionic liquids. As only the most fluid of ionic liquids give consistent results with this standard procedure a different pulse sequence is required. The stimulated echo sequence is shown to have no viscosity dependence and is therefore recommended for PFG-NMR studies on ionic liquids. Finally, mixtures of ionic liquids and molecular solvents will produce materials that are useful in some applications, and this work presents a study comparing analysis based on transport properties (Le. the Walden plot) against studies of the vapour pressure (Le. osmotic coefficient and activities). It is shown that both techniques give evidence of ion aggregation at low concentrations, but deviate from one another above -0.3 mole fraction ionic liquid. This is attributed to breakdown of the validity of osmotic coefficient measurements at high salt concentrations. An effect of solvent polarity on ion aggregation is also observed. This work gives significant advances in the probing of the state of ions within an ionic liquid, and gives insights into how ions interact with each other, other ionic liquids and molecular solvents. The findings here can serve as a basis for developing new ionic liquids, as well as direct investigations for new ionic liquid mixtures.

The Conductivity of Liquids

The Conductivity of Liquids PDF Author: Olin Freeman Tower
Publisher:
ISBN:
Category : Electrolytes
Languages : en
Pages : 214

Get Book Here

Book Description


Electromagnetic Field Radiation in Matter

Electromagnetic Field Radiation in Matter PDF Author: Walter Gustavo Fano
Publisher: BoD – Books on Demand
ISBN: 1789845181
Category : Condensed matter
Languages : en
Pages : 154

Get Book Here

Book Description
This book is dedicated to the interaction of electromagnetic wave radiation in matter, such as the wave propagation in a plasmonic and conductive state, that are dispersive media. The different measurement methods of electrical properties of soils have been studied using several applications. The experimental results of the thermoelectric properties of a chalcogenide system and the electrical conductivity of molten salts and ionic conduction in electrolyte solutions are discussed. The application of an electric field impulse and its influence on the immune responses of animals by increasing different elements of the immune response is discussed. The electromagnetic radiation transmission through skin samples of pigs of different ages have been measured in order to understand the process of absorption and conversion. The methods and results are covered in the book.

Thermal Effects in Supercapacitors

Thermal Effects in Supercapacitors PDF Author: Guoping Xiong
Publisher: Springer
ISBN: 3319202421
Category : Technology & Engineering
Languages : en
Pages : 154

Get Book Here

Book Description
This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.

Advanced Applications of Ionic Liquids

Advanced Applications of Ionic Liquids PDF Author: Jamal Akhter Siddique
Publisher: Elsevier
ISBN: 0323984002
Category : Science
Languages : en
Pages : 569

Get Book Here

Book Description
Advanced Applications of Ionic Liquids discusses the intersection of nanotechnology with ionic liquids (ILs) and materials, along with opportunities for advanced engineering applications in various research fields. Novel materials at nano scales with ILs creates an upsurge in the thermal and electrochemical constancy of the nano scale particles, making them ideal for industrial applications. The implementation of ILs at nano scale includes an interaction of constituents, which is beneficial for electron transfer reactions. These new composites can be implemented as sensors, electronics, catalysts and photonics. Including ILs in polymer composites enhance electrochemical consistency, govern particle size, upsurge conductivity, reduce toxicity, and more. This book is a comprehensive reference for researchers working with IL based technologies for environmental and energy applications. Covers all industrial aspects and advanced applications of ionic liquids (ILs) Discusses the advanced applications of ILs across multiple fields, including industrial chemistry and chemical engineering Includes a discussion of the use of ionic liquids in functional polymers, with applications for catalysis, energy conservation, sensors, and more