Author: Tim Leung (Professor of industrial engineering)
Publisher: World Scientific
ISBN: 9814725927
Category : Business & Economics
Languages : en
Pages : 221
Book Description
"Optimal Mean Reversion Trading: Mathematical Analysis and Practical Applications provides a systematic study to the practical problem of optimal trading in the presence of mean-reverting price dynamics. It is self-contained and organized in its presentation, and provides rigorous mathematical analysis as well as computational methods for trading ETFs, options, futures on commodities or volatility indices, and credit risk derivatives. This book offers a unique financial engineering approach that combines novel analytical methodologies and applications to a wide array of real-world examples. It extracts the mathematical problems from various trading approaches and scenarios, but also addresses the practical aspects of trading problems, such as model estimation, risk premium, risk constraints, and transaction costs. The explanations in the book are detailed enough to capture the interest of the curious student or researcher, and complete enough to give the necessary background material for further exploration into the subject and related literature. This book will be a useful tool for anyone interested in financial engineering, particularly algorithmic trading and commodity trading, and would like to understand the mathematically optimal strategies in different market environments."--
Optimal Mean Reversion Trading
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Numerical Solution of Stochastic Differential Equations with Jumps in Finance
Author: Eckhard Platen
Publisher: Springer Science & Business Media
ISBN: 364213694X
Category : Mathematics
Languages : en
Pages : 868
Book Description
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.
Publisher: Springer Science & Business Media
ISBN: 364213694X
Category : Mathematics
Languages : en
Pages : 868
Book Description
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.
Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives
Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 113950245X
Category : Mathematics
Languages : en
Pages : 456
Book Description
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
Publisher: Cambridge University Press
ISBN: 113950245X
Category : Mathematics
Languages : en
Pages : 456
Book Description
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
Factor Investing and Asset Allocation: A Business Cycle Perspective
Author: Vasant Naik
Publisher: CFA Institute Research Foundation
ISBN: 1944960155
Category : Business & Economics
Languages : en
Pages : 192
Book Description
Publisher: CFA Institute Research Foundation
ISBN: 1944960155
Category : Business & Economics
Languages : en
Pages : 192
Book Description
Strategic Asset Allocation
Author: John Y. Campbell
Publisher: OUP Oxford
ISBN: 019160691X
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.
Publisher: OUP Oxford
ISBN: 019160691X
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.
Derivatives in Financial Markets with Stochastic Volatility
Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222
Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222
Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
An Introduction to the Mathematics of Financial Derivatives
Author: Salih N. Neftci
Publisher: Academic Press
ISBN: 0125153929
Category : Business & Economics
Languages : en
Pages : 550
Book Description
A step-by-step explanation of the mathematical models used to price derivatives. For this second edition, Salih Neftci has expanded one chapter, added six new ones, and inserted chapter-concluding exercises. He does not assume that the reader has a thorough mathematical background. His explanations of financial calculus seek to be simple and perceptive.
Publisher: Academic Press
ISBN: 0125153929
Category : Business & Economics
Languages : en
Pages : 550
Book Description
A step-by-step explanation of the mathematical models used to price derivatives. For this second edition, Salih Neftci has expanded one chapter, added six new ones, and inserted chapter-concluding exercises. He does not assume that the reader has a thorough mathematical background. His explanations of financial calculus seek to be simple and perceptive.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 860
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 860
Book Description
Bond Portfolio Optimization
Author: Michael Puhle
Publisher: Springer Science & Business Media
ISBN: 354076593X
Category : Business & Economics
Languages : en
Pages : 143
Book Description
The book analyzes how modern portfolio theory and dynamic term structure models can be applied to government bond portfolio optimization problems. The author studies the necessary adjustments, examines the models with regard to the plausibility of their results and compares the outcomes to portfolio selection techniques used by practitioners. Both single-period and continuous-time bond portfolio optimization problems are considered.
Publisher: Springer Science & Business Media
ISBN: 354076593X
Category : Business & Economics
Languages : en
Pages : 143
Book Description
The book analyzes how modern portfolio theory and dynamic term structure models can be applied to government bond portfolio optimization problems. The author studies the necessary adjustments, examines the models with regard to the plausibility of their results and compares the outcomes to portfolio selection techniques used by practitioners. Both single-period and continuous-time bond portfolio optimization problems are considered.