The Growth, Structure and Electrical Properties of PVD Deposited Thin Films and Nanostructures of Bismuth and Antimony

The Growth, Structure and Electrical Properties of PVD Deposited Thin Films and Nanostructures of Bismuth and Antimony PDF Author: Steven Antony Stanley
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

The Growth, Structure and Electrical Properties of PVD Deposited Thin Films and Nanostructures of Bismuth and Antimony

The Growth, Structure and Electrical Properties of PVD Deposited Thin Films and Nanostructures of Bismuth and Antimony PDF Author: Steven Antony Stanley
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes

Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes PDF Author: Nong Moon Hwang
Publisher: Springer
ISBN: 9401776164
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
This book provides a comprehensive introduction to a recently-developed approach to the growth mechanism of thin films and nanostructures via chemical vapour deposition (CVD). Starting from the underlying principles of the low pressure synthesis of diamond films, it is shown that diamond growth occurs not by individual atoms but by charged nanoparticles. This newly-discovered growth mechanism turns out to be general to many CVD and some physical vapor deposition (PVD) processes. This non-classical crystallization is a new paradigm of crystal growth, with active research taking place on growth in solution, especially in biomineralization processes. Established understanding of the growth of thin films and nanostructures is based around processes involving individual atoms or molecules. According to the author’s research over the last two decades, however, the generation of charged gas phase nuclei is shown to be the rule rather than the exception in the CVD process, and charged gas phase nuclei are actively involved in the growth of films or nanostructures. This new understanding is called the theory of charged nanoparticles (TCN). This book describes how the non-classical crystallization mechanism can be applied to the growth of thin films and nanostructures in gas phase synthesis. Based on the author’s graduate lecture course, the book is aimed at senior undergraduate and graduate students and researchers in the field of thin film and nanostructure growth or crystal growth. It is hoped that a new understanding of the growth processes of thin films and nanostructures will reduce trial-and-error in research and in industrial fabrication processes.

Phase Transitions, Transfer and Nanoscale Growth of Epitaxial Bi and Bi1̳-̳x̳Sbx̳ Thin Films

Phase Transitions, Transfer and Nanoscale Growth of Epitaxial Bi and Bi1̳-̳x̳Sbx̳ Thin Films PDF Author: Emily Susan Walker
Publisher:
ISBN:
Category :
Languages : en
Pages : 270

Get Book Here

Book Description
Bismuth (Bi) and Bismuth-Antimony (Bi [subscript 1-x] Sb [subscript x]) alloys are considered very promising for emerging spintronic devices due to their large spin-orbit coupling, high mobility, and conductive, spin-split surface states, which are topologically non-trivial in Bi [subscript 1-x] Sb [subscript x]. Due to the long mean free path in Bi, quantum confinement effects become significant in relatively thick (~100 nm) films, resulting in the opening of a small, indirect band gap and enabling tuning of the electronic properties through the film thickness. Quantum confinement effects are expected to occur in Bi [subscript 1-x] Sb [subscript x] films at a similar length scale, which may enlarge the bulk band gap and extend the topologically insulating composition regime. When the film thickness of epitaxial Bi on Si(111) is reduced below a few nanometers, a puckered-layer allotropic structure similar to black phosphorus is stable. This puckered-layer structure is expected to exhibit unique properties, including a larger band gap and increased spin splitting, which may be useful for 2-D spintronics; however, the tendency of this structure to grow in small islands inhibits characterization. This dissertation explores the growth of both bulk-like and puckered-layer Bi and Bi [subscript 1-x] Sb [subscript x] on Si(111), and discusses how the unique properties of this system may be controlled through the growth parameters, film thickness, and composition. We find that while alloying bulk-like Bi with Sb in the quantum confinement thickness regime may increase the band gap, the crystalline orientation changes with increasing concentrations of Sb. This effect has not been observed in epitaxial Bi [subscript 1-x] Sb [subscript x] on other substrates, and significantly impacts the electronic properties of the films. In contrast, alloying Sb with nanoscale puckered-layer Bi improves the crystallinity and continuity, suggesting a promising route towards tuning the band structure of puckered-layer Bi and producing large-area films for electrical measurements. Finally, we demonstrate that epitaxial Bi and Bi [subscript 1-x] Sb [subscript x] films exhibit surprisingly weak adhesion to the Si(111) growth substrate, which may originate from the early allotropic transition. This weak adhesion enables the straightforward transfer of these films, opening a route toward the integration of epitaxial-quality Bi and Bi [subscript 1-x] Sb [subscript x] films with arbitrary substrates for novel heterostructures.

Temperature Impact on Thermal Evolution of Advanced PVD Ceramic and Metallic Glass Thin Films

Temperature Impact on Thermal Evolution of Advanced PVD Ceramic and Metallic Glass Thin Films PDF Author: Mihai Apreutesei
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In the recent years the industrial requirements to develop new functional materials able to overcome the severe conditions during machining operation are continuously increasing. Researchers then must find novel solutions to respond to their severe industrial requirements. To coat the tool surface with advanced coatings is the most efficient solution. New nanostructured materials may nowadays exhibit unique mechanical, physical and chemical properties ensuring notable degradation resistance where the surface protection of materials against corrosion, wear, friction or oxidation is a key issue, particularly when operating in hostile environments. Within the scope of this Ph.D. thesis the influence of the temperature on the structural stability of two different PVD ceramic and metallic glass thin films is proposed. The main goal consists in the development of two distinct classes of thin films, with a wide range of properties. In order to prepare these films, the project will be focused on the study on the influence of PVD deposition conditions in the particular film's growth characteristics: chemical composition, structure, morphology and the subsequent changes in the main properties of the thin films, namely oxidation and crystallization resistance, especially. For that purpose we adopted the multiscale approach. The first part is related to the ceramic CrN-based coatings to give new functionalities and improve the tools' surface with the primary aim to increase their lifetime. Secondly, new protective materials able to better protect the exposed surfaces against high temperature oxidation have been proposed, namely CrAlN and CrAlYN coatings as will be evidenced in this manuscript. The second part of the manuscript is dedicated to the innovative Zr-Cu thin films metallic glasses prepared by a PVD magnetron co-sputtering method with the objective to investigate the amorphization ability and their structural properties. Their excellent properties at room temperature have recently attracted attention as a new class of materials with great potential for engineering applications due to unique mechanical and physico-chemical characteristics (high elastic strain limit, corrosion resistance...). Finally, an important approach during the course of this thesis was the real time observation of the structure and surface modifications during heating by means of in situ methods. The thin films proposed during the course of the work could be straightforward used as surface engineering solutions to protect and extend the lifetime of the materials and components.

Structures and Electrical Properties of Bismuth Thin Films Grown at Low Temperature

Structures and Electrical Properties of Bismuth Thin Films Grown at Low Temperature PDF Author: 吳耿碩
Publisher:
ISBN:
Category :
Languages : en
Pages : 81

Get Book Here

Book Description


Deposition and Characterisation of Bismuth Layer-structured Ferroelectric Films

Deposition and Characterisation of Bismuth Layer-structured Ferroelectric Films PDF Author: Xiaobing Hu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Bismuth layer-structured ferroelectrics have been recognised as promising film materials for ferroelectric random access memory application due to their excellent fatigue resistance and other electrical properties. This work deals with the deposition and characterisation of epitaxial and polycrystalline W-doped SrBi2Ta2O9 (SBT) and lanthanide-doped bismuth titanate (BiT) films. SBT and W-doped SBT films were fabricated by pulsed laser deposition (PLD) on platinised silicon substrates. The effects of fabrication temperature and W-doping level on film properties were studied. The crystallinity of SBTW films improved with increasing fabrication temperatures, resulting in enhanced ferroelectric properties and dielectric properties above the fabrication temperature of 750 °C. Dense ceramic samples of Nd- and Sm-doped BiT (BNdT and BSmT) were successfully fabricated for PLD targets by solid state processing. Highly epitaxially (001)-, (118)-, and(104)-oriented Nd-doped bismuth titanate (BNdT) films were grown by PLD on (001)-, (011)-, and (111)-oriented SrTiO3 (STO) single crystal substrates, respectively. A three-dimensional orientation relationship between films and substrates was derived as: BNdT(001)//STO(001), BNdT[110]//STO[100]. Films showed strong dependence of structural and ferroelectric properties on the crystal orientation. PLD-grown BSmT films on platinised silicon substrates were studied as a function of fabrication temperature, effects of Pt bottom layer orientation, Sm doping level, and LaNiO3 buffer layer. An alkoxide-salt chemical solution deposition (CSD) method was adopted to prepare the precursors for BSmT (BNdT) film fabrication. Precursors of Bi-Sm(Nd)-Ti which were stable for at least eight months in air ambient were successfully developed. In-situ FT-IR studies suggest that acetic acid serves as chelating agent to improve the homogeneity of the precursor solution by generating a dense and homogeneous Ti-O-Ti polymeric network. The electrical properties of the films fabricated in this study (dielectric and ferroelectric properties, leakage current characteristics and electrical fatigue properties), are comparable or superior to these previously reported for similar films developed by other techniques or with other doping elements. Low temperature electrical properties of BSmT films suggest that the films are very promising for extremely low temperature nonvolatile memory applications. The results of BNdT films annealed at different oxygen partial pressure (O2, air, N2) showed that oxygen ambience affected structural properties of the films by enhancing the growth of perovskite phase (phase formation), increasing grain size (grain growth), and assisting the growth of (117)-oriented grains (crystallographic orientations). Piezoresponse force microscopy (PFM) was adopted to characterise BSmT films. Domain structures were clearly observed in a PLD-grown BSmT film, which were closely related to the grain structures. Domain manipulation was carried out in a CSD-derived BSmT film, showing that the film can be nearly uniformly polarised, which can be used in nanoscale device fabrication. Clear hysteresis loops were measured by PFM, which was an important proof of ferroelectricity. Large spatial variations of piezoelectric hysteresis loops of a CSD-derived BSmT film were observed across the film surface. Effective electrostriction coefficient (Qeff) of a PLD-grown BSmT film was measured, showing that BSmT films had better piezoelectric properties (higher Qeff, higher dzz) than SBT films, un-doped BiT ceramics and films. It suggests that BSmT films are promising piezoelectric materials for MEMS use.

Nanostructured Lead, Cadmium, and Silver Sulfides

Nanostructured Lead, Cadmium, and Silver Sulfides PDF Author: Stanislav I. Sadovnikov
Publisher: Springer
ISBN: 3319563874
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book presents and analyzes the influence of small size particles of lead, cadmium and silver sulfide on the properties of nonstoichiometric semiconductors. Important nonstoichiometry aspects in nanostructures are discussed, such as the distribution of sulfur atoms in nanofilms, a non-periodic distribution of the atomic planes in nanoparticles, interdependent changes in crystal structure of nanocrystalline material. Tuning the stoichiometry allows to obtain superionic conductivity and catalytic activity under visible light. The wavelength of the luminescence of nanoparticles changes with the size of the nanoparticles. Various methods to prepare nanostructured sulfides are described. Special attention is given to the hydrochemical bath deposition as a universal method for the synthesis of sulfides as nanofilms, stable colloidal solutions, quantum dots, isolated nanoparticles with a protective shell and heteronanostructures. The effect of nanoparticle size and nonstoichiometry on the band gap, optical and thermal properties of nanostructured sulfides is also considered. The novel applications of sulfide nanoparticles in nanoelectronics, catalysis, nanobiology and nanomedicine are sketched.

Chemical Solution Deposition of Semiconducting and Non-metallic Films

Chemical Solution Deposition of Semiconducting and Non-metallic Films PDF Author: Daniel Lincot
Publisher: The Electrochemical Society
ISBN: 9781566774338
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description


Thin-Film Diamond II

Thin-Film Diamond II PDF Author: Christopher Nebel
Publisher: Elsevier
ISBN: 0080541046
Category : Science
Languages : en
Pages : 411

Get Book Here

Book Description
Part II reviews the state of the art of thin film diamond a very promising new semiconductor that may one day rival silicon as the material of choice for electronics. Diamond has the following important characteristics; it is resistant to radiation damage, chemically inert and biocompatible and it will become "the material" for bio-electronics, in-vivo applications, radiation detectors and high-frequency devices. Thin-Film Diamond II is the first book to summarize state of the art of CVD diamond in depth. It covers the most recent results regarding growth and structural properties, doping and defect characterization, hydrogen in and on diamond as well as surface properties in general, applications of diamond in electrochemistry, as detectors, and in surface acoustic wave devices * Accessible by both experts and non-experts in the field of semi-conductors research and technology, each chapter is written in a tutorial format· * Assisting engineers to manufacture devices with optimized electronic properties· * Truly international, this volume contains chapters written by recognized experts representing academic and industrial institutions from Europe, Japan and the US

The Effect of Associated Parameters on the Electrical Properties of Vacuum-deposited Thin-film Bismuth

The Effect of Associated Parameters on the Electrical Properties of Vacuum-deposited Thin-film Bismuth PDF Author: Robert Troy Amos
Publisher:
ISBN:
Category : Bismuth
Languages : en
Pages : 162

Get Book Here

Book Description