The Growth of Single Crystals

The Growth of Single Crystals PDF Author: R. A. Laudise
Publisher: Prentice Hall
ISBN:
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description

The Growth of Single Crystals

The Growth of Single Crystals PDF Author: R. A. Laudise
Publisher: Prentice Hall
ISBN:
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description


Single Crystals of Electronic Materials

Single Crystals of Electronic Materials PDF Author: Roberto Fornari
Publisher: Woodhead Publishing Limited
ISBN: 9780081020968
Category :
Languages : en
Pages : 400

Get Book Here

Book Description
Single Crystals of Electronic Materials: Growth and Properties is a complete overview of the state of the art growth of bulk semiconductors. It is not only a valuable update of the body of information on crystal growth of well-established electronic materials such as silicon, III-V, II-VI and IV-VI semiconductors, but includes chapters on novel semiconductors including wide bandgap oxides (ZnO Ga2O3, In2O3, Al2O3), nitrides (AIN and GaN) and diamond. Each chapter focuses in-depth on a material, providing a comprehensive overview including: Applications and requirements of the electronic material Thermodynamic properties and definition of usable growth methods Schematics of growth methods for the material Description of up-to-date growth technologies and processes Tailoring of crystal properties via growth parameters Benefits of computer modelling Doping issues and reduction of defect density State-of-the art of the material New trends and future developments

Beginner’s Guide to Flux Crystal Growth

Beginner’s Guide to Flux Crystal Growth PDF Author: Makoto Tachibana
Publisher: Springer
ISBN: 4431565876
Category : Science
Languages : en
Pages : 138

Get Book Here

Book Description
This book introduces the principles and techniques of crystal growth by the flux method, which is arguably the most useful way to obtain millimeter- to centimeter-sized single crystals for physical research. As it is possible to find an appropriate solvent (“flux”) for nearly all inorganic materials, the flux method can be applied to the growth of many crystals ranging from transition metal oxides to intermetallic compounds. Both important principles and experimental procedures are described in a clear and accessible manner. Practical advice on various aspects of the experiment, which is not readily available in the literature, will assist the beginning graduate students in setting up the lab and conducting successful crystal growth. The mechanisms of crystal growth at an elementary level are also provided to better understand the techniques and to help in assessing the quality of the crystals. The book also contains many photographs of beautiful crystals with important physical properties of current interest, such as high-temperature superconductors, strongly correlated electronic systems, topological insulators, relaxor ferroelectrics, low-dimensional quantum magnets, non-linear optical materials, and multiferroics.

Crystal Growth Technology

Crystal Growth Technology PDF Author: Hans J. Scheel
Publisher: John Wiley & Sons
ISBN: 0470491108
Category : Science
Languages : en
Pages : 695

Get Book Here

Book Description
This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: * General aspects of crystal growth technology * Silicon * Compound semiconductors * Oxides and halides * Crystal machining * Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

Crystal Growth Technology

Crystal Growth Technology PDF Author: K. Byrappa
Publisher: Springer Science & Business Media
ISBN: 9783540003670
Category : Science
Languages : en
Pages : 618

Get Book Here

Book Description
Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers. The book begins with "Growth Histories of Mineral Crystals" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.

The Growth of Single Crystals

The Growth of Single Crystals PDF Author: Charles S. Sahagian
Publisher:
ISBN:
Category : Crystal growth
Languages : en
Pages : 74

Get Book Here

Book Description
Single crystals of over 100 different electronically active materials have been synthesized using a variety of methods, including growth by flame-fusion, flux, melt, gel diffusion, low-temperature solution, vapor, as well as synthesis by ultra-high-pressure techniques. These crystals, including a large number of doped specimens, emphasize oxides, garnets, silicates, ferrites, fluorides, as well as a large variety of other electromagnetic materials. Charts are presented giving summary data on single crystals grown, percentage and kind of dopants, growth methods and apparatus, crystal dimensions and other physical characteristics, primary research interest or use, crystal system, class, space group, and pertinent references. Several of the growth methods and recent Laboratory accomplishments are described. (Author).

Ceramic Materials

Ceramic Materials PDF Author: C. Barry Carter
Publisher: Springer Science & Business Media
ISBN: 1461435234
Category : Technology & Engineering
Languages : en
Pages : 775

Get Book Here

Book Description
Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.

Crystal Growth for Beginners

Crystal Growth for Beginners PDF Author: Ivan V. Markov
Publisher: World Scientific
ISBN: 9812382453
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
This is the first-ever textbook on the fundamentals of nucleation, crystal growth and epitaxy. It has been written from a unified point of view and is thus a non-eclectic presentation of this interdisciplinary topic in materials science. The reader is required to possess some basic knowledge of mathematics and physics. All formulae and equations are accompanied by examples that are of technological importance. The book presents not only the fundamentals but also the state of the art in the subject. The second revised edition includes two separate chapters dealing with the effect of the Enrich-Schwoebel barrier for down-step diffusion, as well as the effect of surface active species, on the morphology of the growing surfaces. In addition, many other chapters are updated accordingly. Thus, it serves as a valuable reference book for both graduate students and researchers in materials science.

Handbook of Crystal Growth

Handbook of Crystal Growth PDF Author: Tatau Nishinaga
Publisher: Elsevier
ISBN: 0444593764
Category : Science
Languages : en
Pages : 1216

Get Book Here

Book Description
Volume IAHandbook of Crystal Growth, 2nd Edition (Fundamentals: Thermodynamics and Kinetics) Volume IA addresses the present status of crystal growth science, and provides scientific tools for the following volumes: Volume II (Bulk Crystal Growth) and III (Thin Film Growth and Epitaxy). Volume IA highlights thermodynamics and kinetics. After historical introduction of the crystal growth, phase equilibria, defect thermodynamics, stoichiometry, and shape of crystal and structure of melt are described. Then, the most fundamental and basic aspects of crystal growth are presented, along with the theories of nucleation and growth kinetics. In addition, the simulations of crystal growth by Monte Carlo, ab initio-based approach and colloidal assembly are thoroughly investigated. Volume IBHandbook of Crystal Growth, 2nd Edition (Fundamentals: Transport and Stability) Volume IB discusses pattern formation, a typical problem in crystal growth. In addition, an introduction to morphological stability is given and the phase-field model is explained with comparison to experiments. The field of nanocrystal growth is rapidly expanding and here the growth from vapor is presented as an example. For the advancement of life science, the crystal growth of protein and other biological molecules is indispensable and biological crystallization in nature gives many hints for their crystal growth. Another subject discussed is pharmaceutical crystal growth. To understand the crystal growth, in situ observation is extremely powerful. The observation techniques are demonstrated. Volume IA - Explores phase equilibria, defect thermodynamics of Si, stoichiometry of oxides and atomistic structure of melt and alloys - Explains basic ideas to understand crystal growth, equilibrium shape of crystal, rough-smooth transition of step and surface, nucleation and growth mechanisms - Focuses on simulation of crystal growth by classical Monte Carlo, ab-initio based quantum mechanical approach, kinetic Monte Carlo and phase field model. Controlled colloidal assembly is presented as an experimental model for crystal growth. Volume IIB - Describes morphological stability theory and phase-field model and comparison to experiments of dendritic growth - Presents nanocrystal growth in vapor as well as protein crystal growth and biological crystallization - Interprets mass production of pharmaceutical crystals to be understood as ordinary crystal growth and explains crystallization of chiral molecules - Demonstrates in situ observation of crystal growth in vapor, solution and melt on the ground and in space

Introduction to Crystal Growth and Characterization

Introduction to Crystal Growth and Characterization PDF Author: Klaus-Werner Benz
Publisher: John Wiley & Sons
ISBN: 3527684344
Category : Technology & Engineering
Languages : en
Pages : 559

Get Book Here

Book Description
This new textbook provides for the first time a comprehensive treatment of the basics of contemporary crystallography and crystal growth in a single volume. The reader will be familiarized with the concepts for the description of morphological and structural symmetry of crystals. The architecture of crystal structures of selected inorganic and molecular crystals is illustrated. The main crystallographic databases as data sources of crystal structures are described. Nucleation processes, their kinetics and main growth mechanism will be introduced in fundamentals of crystal growth. Some phase diagrams in the solid and liquid phases in correlation with the segregation of dopants are treated on a macro- and microscale. Fluid dynamic aspects with different types of convection in melts and solutions are discussed. Various growth techniques for semiconducting materials in connection with the use of external field (magnetic fields and microgravity) are described. Crystal characterization as the overall assessment of the grown crystal is treated in detail with respect to - crystal defects - crystal quality - field of application Introduction to Crystal Growth and Characterization is an ideal textbook written in a form readily accessible to undergraduate and graduate students of crystallography, physics, chemistry, materials science and engineering. It is also a valuable resource for all scientists concerned with crystal growth and materials engineering.