Author: C. Davis
Publisher: Springer Science & Business Media
ISBN: 1461256488
Category : Mathematics
Languages : en
Pages : 590
Book Description
Geometry has been defined as that part of mathematics which makes appeal to the sense of sight; but this definition is thrown in doubt by the existence of great geometers who were blind or nearly so, such as Leonhard Euler. Sometimes it seems that geometric methods in analysis, so-called, consist in having recourse to notions outside those apparently relevant, so that geometry must be the joining of unlike strands; but then what shall we say of the importance of axiomatic programmes in geometry, where reference to notions outside a restricted reper tory is banned? Whatever its definition, geometry clearly has been more than the sum of its results, more than the consequences of some few axiom sets. It has been a major current in mathematics, with a distinctive approach and a distinc ti v e spirit. A current, furthermore, which has not been constant. In the 1930s, after a period of pervasive prominence, it appeared to be in decline, even passe. These same years were those in which H. S. M. Coxeter was beginning his scientific work. Undeterred by the unfashionability of geometry, Coxeter pursued it with devotion and inspiration. By the 1950s he appeared to the broader mathematical world as a consummate practitioner of a peculiar, out-of-the-way art. Today there is no longer anything that out-of-the-way about it. Coxeter has contributed to, exemplified, we could almost say presided over an unanticipated and dra matic revival of geometry.
The Geometric Vein
Author: C. Davis
Publisher: Springer Science & Business Media
ISBN: 1461256488
Category : Mathematics
Languages : en
Pages : 590
Book Description
Geometry has been defined as that part of mathematics which makes appeal to the sense of sight; but this definition is thrown in doubt by the existence of great geometers who were blind or nearly so, such as Leonhard Euler. Sometimes it seems that geometric methods in analysis, so-called, consist in having recourse to notions outside those apparently relevant, so that geometry must be the joining of unlike strands; but then what shall we say of the importance of axiomatic programmes in geometry, where reference to notions outside a restricted reper tory is banned? Whatever its definition, geometry clearly has been more than the sum of its results, more than the consequences of some few axiom sets. It has been a major current in mathematics, with a distinctive approach and a distinc ti v e spirit. A current, furthermore, which has not been constant. In the 1930s, after a period of pervasive prominence, it appeared to be in decline, even passe. These same years were those in which H. S. M. Coxeter was beginning his scientific work. Undeterred by the unfashionability of geometry, Coxeter pursued it with devotion and inspiration. By the 1950s he appeared to the broader mathematical world as a consummate practitioner of a peculiar, out-of-the-way art. Today there is no longer anything that out-of-the-way about it. Coxeter has contributed to, exemplified, we could almost say presided over an unanticipated and dra matic revival of geometry.
Publisher: Springer Science & Business Media
ISBN: 1461256488
Category : Mathematics
Languages : en
Pages : 590
Book Description
Geometry has been defined as that part of mathematics which makes appeal to the sense of sight; but this definition is thrown in doubt by the existence of great geometers who were blind or nearly so, such as Leonhard Euler. Sometimes it seems that geometric methods in analysis, so-called, consist in having recourse to notions outside those apparently relevant, so that geometry must be the joining of unlike strands; but then what shall we say of the importance of axiomatic programmes in geometry, where reference to notions outside a restricted reper tory is banned? Whatever its definition, geometry clearly has been more than the sum of its results, more than the consequences of some few axiom sets. It has been a major current in mathematics, with a distinctive approach and a distinc ti v e spirit. A current, furthermore, which has not been constant. In the 1930s, after a period of pervasive prominence, it appeared to be in decline, even passe. These same years were those in which H. S. M. Coxeter was beginning his scientific work. Undeterred by the unfashionability of geometry, Coxeter pursued it with devotion and inspiration. By the 1950s he appeared to the broader mathematical world as a consummate practitioner of a peculiar, out-of-the-way art. Today there is no longer anything that out-of-the-way about it. Coxeter has contributed to, exemplified, we could almost say presided over an unanticipated and dra matic revival of geometry.
ICGG 2024 - Proceedings of the 21st International Conference on Geometry and Graphics
Author: Kazuki Takenouchi
Publisher: Springer Nature
ISBN: 3031710088
Category :
Languages : en
Pages : 461
Book Description
Publisher: Springer Nature
ISBN: 3031710088
Category :
Languages : en
Pages : 461
Book Description
Convexity from the Geometric Point of View
Author: Vitor Balestro
Publisher: Springer Nature
ISBN: 3031505077
Category :
Languages : en
Pages : 1195
Book Description
Publisher: Springer Nature
ISBN: 3031505077
Category :
Languages : en
Pages : 1195
Book Description
Vein Pattern Recognition
Author: Chuck Wilson
Publisher: CRC Press
ISBN: 1439857563
Category : Business & Economics
Languages : en
Pages : 324
Book Description
As one of the most promising biometric technologies, vein pattern recognition (VPR) is quickly taking root around the world and may soon dominate applications where people focus is key. Among the reasons for VPR‘s growing acceptance and use: it is more accurate than many other biometric methods, it offers greater resistance to spoofing, it focuses
Publisher: CRC Press
ISBN: 1439857563
Category : Business & Economics
Languages : en
Pages : 324
Book Description
As one of the most promising biometric technologies, vein pattern recognition (VPR) is quickly taking root around the world and may soon dominate applications where people focus is key. Among the reasons for VPR‘s growing acceptance and use: it is more accurate than many other biometric methods, it offers greater resistance to spoofing, it focuses
Buildings and the Geometry of Diagrams
Author: Luigi A. Rosati
Publisher: Springer
ISBN: 3540398015
Category : Mathematics
Languages : en
Pages : 287
Book Description
Publisher: Springer
ISBN: 3540398015
Category : Mathematics
Languages : en
Pages : 287
Book Description
The Geometry of Discrete Groups
Author: Alan F. Beardon
Publisher: Springer Science & Business Media
ISBN: 1461211468
Category : Mathematics
Languages : en
Pages : 350
Book Description
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.
Publisher: Springer Science & Business Media
ISBN: 1461211468
Category : Mathematics
Languages : en
Pages : 350
Book Description
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.
Groups, Combinatorics and Geometry
Author: Martin W. Liebeck
Publisher: Cambridge University Press
ISBN: 0521406854
Category : Mathematics
Languages : en
Pages : 505
Book Description
This volume contains a collection of papers on the subject of the classification of finite simple groups.
Publisher: Cambridge University Press
ISBN: 0521406854
Category : Mathematics
Languages : en
Pages : 505
Book Description
This volume contains a collection of papers on the subject of the classification of finite simple groups.
Geometry of Numbers
Author: C.G. Lekkerkerker
Publisher: Elsevier
ISBN: 0080960235
Category : Mathematics
Languages : en
Pages : 749
Book Description
This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definite advantage of showing clearly where recent progress has taken place and in what areas interesting results may be expected in the future.
Publisher: Elsevier
ISBN: 0080960235
Category : Mathematics
Languages : en
Pages : 749
Book Description
This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definite advantage of showing clearly where recent progress has taken place and in what areas interesting results may be expected in the future.
Geometry and Combinatorics
Author: J. J. Seidel
Publisher: Academic Press
ISBN: 1483268004
Category : Mathematics
Languages : en
Pages : 431
Book Description
Geometry and Combinatorics: Selected Works of J. J. Seidel brings together some of the works of J. J. Seidel in geometry and combinatorics. Seidel's selected papers are divided into four areas: graphs and designs; lines with few angles; matrices and forms; and non-Euclidean geometry. A list of all of Seidel's publications is included. Comprised of 29 chapters, this book begins with a discussion on equilateral point sets in elliptic geometry, followed by an analysis of strongly regular graphs of L2-type and of triangular type. The reader is then introduced to strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3; graphs related to exceptional root systems; and equiangular lines. Subsequent chapters deal with the regular two-graph on 276 vertices; the congruence order of the elliptic plane; equi-isoclinic subspaces of Euclidean spaces; and Wielandt's visibility theorem. This monograph will be of interest to students and practitioners in the field of mathematics.
Publisher: Academic Press
ISBN: 1483268004
Category : Mathematics
Languages : en
Pages : 431
Book Description
Geometry and Combinatorics: Selected Works of J. J. Seidel brings together some of the works of J. J. Seidel in geometry and combinatorics. Seidel's selected papers are divided into four areas: graphs and designs; lines with few angles; matrices and forms; and non-Euclidean geometry. A list of all of Seidel's publications is included. Comprised of 29 chapters, this book begins with a discussion on equilateral point sets in elliptic geometry, followed by an analysis of strongly regular graphs of L2-type and of triangular type. The reader is then introduced to strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3; graphs related to exceptional root systems; and equiangular lines. Subsequent chapters deal with the regular two-graph on 276 vertices; the congruence order of the elliptic plane; equi-isoclinic subspaces of Euclidean spaces; and Wielandt's visibility theorem. This monograph will be of interest to students and practitioners in the field of mathematics.
Simulation and Synthesis in Medical Imaging
Author: Sotirios A. Tsaftaris
Publisher: Springer
ISBN: 3319681273
Category : Computers
Languages : en
Pages : 116
Book Description
This book constitutes the refereed proceedings of the Second International Workshop on Simulation and Synthesis in Medical Imaging, held in conjunction with MICCAI 2017, in Québec City, Canada, in September 2017. The 11 revised full papers presented were carefully reviewed and selected from 14 submissions. The contributions span the following broad categories: cross modality (PET/MR, PET/CT, CT/MR, etc.) image synthesis, simulation and synthesis from large-scale image databases, automated techniques for quality assessment images, and several applications of image synthesis and simulation in medical imaging such as image interpolation and segmentation, image reconstruction, cell imaging, and blood flow.
Publisher: Springer
ISBN: 3319681273
Category : Computers
Languages : en
Pages : 116
Book Description
This book constitutes the refereed proceedings of the Second International Workshop on Simulation and Synthesis in Medical Imaging, held in conjunction with MICCAI 2017, in Québec City, Canada, in September 2017. The 11 revised full papers presented were carefully reviewed and selected from 14 submissions. The contributions span the following broad categories: cross modality (PET/MR, PET/CT, CT/MR, etc.) image synthesis, simulation and synthesis from large-scale image databases, automated techniques for quality assessment images, and several applications of image synthesis and simulation in medical imaging such as image interpolation and segmentation, image reconstruction, cell imaging, and blood flow.