The Generalized Pignistic Transformation

The Generalized Pignistic Transformation PDF Author: Jean Dezert
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
This paper presents in detail the generalized pignistic transformation (GPT)succinctly developed in the Dezert-Smarandache Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any generalized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the complete result obtained by the GPT and its validation drawn from the probability theory.

The Generalized Pignistic Transformation

The Generalized Pignistic Transformation PDF Author: Jean Dezert
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
This paper presents in detail the generalized pignistic transformation (GPT)succinctly developed in the Dezert-Smarandache Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any generalized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the complete result obtained by the GPT and its validation drawn from the probability theory.

AN INTRODUCTION TO DSMT IN INFORMATION FUSION

AN INTRODUCTION TO DSMT IN INFORMATION FUSION PDF Author: Jean Dezert
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 64

Get Book Here

Book Description
The management and combination of uncertain, imprecise, fuzzy and even paradoxical or highly confliicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications ofDSmT available in literature. Several simple examples are given throughout this presentation to show the effciency and the generality of this new theory.

Advances and Applications of DSmT for Information Fusion (Collected works)

Advances and Applications of DSmT for Information Fusion (Collected works) PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1931233829
Category : Computers
Languages : en
Pages : 438

Get Book Here

Book Description
Papers collected from researchers in fusion information, such as: Florentin Smarandache, Jean Dezert, Hongshe Dang, Chongzhao Han, Frederic Dambreville, Milan Daniel, Mohammad Khoshnevisan, Sukanto Bhattacharya, Albena Tchamova, Tzvetan Semerdjiev, Pavlina Konstantinova, Hongyan Sun, Mohammad Farooq, John J. Sudano, Samuel Corgne, Gregoire Mercier, Laurence Hubert-Moy, Anne-Laure Jousselme, Patrick Maupin and others on Dezert-Smarandache Theory of Plausible and Paradoxical Reasoning (DSmT).. The principal theories available until now for data fusion are the probability theory, the fuzzy set theory, the possibility theory, the hint theory and the theory of evidence. Since last two years J. Dezert and F. Smarandache are actively developing a new theory of plausible and paradoxical reasoning, called DSmT (acronym for Dezert-Smarandache Theory), for information fusion of uncertain and highly conflicting sources of information. The DSmT can be interpreted as a generalization of the Dempster-Shafer Theory (DST) but goes far beyond the DST. The free-DSmT model, which assumes that the ultimate refinement of the frame of discernment of the fusion problem is not accessible due to the intrinsic nature of its elements, is opposite to the Shafer's model (on which is based the DST) assuming the exhaustivity and exclusivity of all elements of the frame of discernment. The DSmT proposes a new theoretical framework for data fusion based on definition of hyper-power sets and a new simple commutative and associative rule of combination. Recently, it has been discovered, through a new DSm hybrid rule of combination, that DSmT can be also extended to problems involving hybrid-models (models including some exclusivity and/or non-existentially constraints). This new important theoretical result offers now to the DSmT a wider class of fusion applications and allows potentially to attack the next generation of complex dynamical/temporal fusion problems. DSmT can also provide a theoretical issue for the fusion of neutrosophic information (extension of fuzzy information proposed by F. Smarandache in nineties - see http://www.gallup.unm.edu/~smarandache/FirstNeutConf.htm for details about the neutrosophy logic and neutrosophy set theory).

A novel decision probability transformation method based on belief interval

A novel decision probability transformation method based on belief interval PDF Author: Zhan Deng
Publisher: Infinite Study
ISBN:
Category : Education
Languages : en
Pages : 11

Get Book Here

Book Description
In Dempster–Shafer evidence theory, the basic probability assignment (BPA) can effectively represent and process uncertain information. How to transform the BPA of uncertain information into a decision probability remains a problem to be solved. In the light of this issue, we develop a novel decision probability transformation method to realize the transition from the belief decision to the probability decision in the framework of Dempster–Shafer evidence theory. The newly proposed method considers the transformation of BPA with multi-subset focal elements from the perspective of the belief interval, and applies the continuous interval argument ordered weighted average operator to quantify the data information contained in the belief interval for each singleton. Afterward, we present an approach to calculate the support degree of the singleton based on quantitative data information. According to the support degree of the singleton, the BPA of multi-subset focal elements is allocated reasonably. Furthermore, we introduce the concepts of probabilistic information content in this paper, which is utilized to evaluate the performance of the decision probability transformation method. Eventually, a few numerical examples and a practical application are given to demonstrate the rationality and accuracy of our proposed method.

Advances and Applications of DSmT for Information Fusion, Vol. 3

Advances and Applications of DSmT for Information Fusion, Vol. 3 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599730731
Category : Science
Languages : en
Pages : 760

Get Book Here

Book Description
This volume has about 760 pages, split into 25 chapters, from 41 contributors. First part of this book presents advances of Dezert-Smarandache Theory (DSmT) which is becoming one of the most comprehensive and flexible fusion theory based on belief functions. It can work in all fusion spaces: power set, hyper-power set, and super-power set, and has various fusion and conditioning rules that can be applied depending on each application. Some new generalized rules are introduced in this volume with codes for implementing some of them. For the qualitative fusion, the DSm Field and Linear Algebra of Refined Labels (FLARL) is proposed which can convert any numerical fusion rule to a qualitative fusion rule. When one needs to work on a refined frame of discernment, the refinement is done using Smarandache¿s algebraic codification. New interpretations and implementations of the fusion rules based on sampling techniques and referee functions are proposed, including the probabilistic proportional conflict redistribution rule. A new probabilistic transformation of mass of belief is also presented which outperforms the classical pignistic transformation in term of probabilistic information content. The second part of the book presents applications of DSmT in target tracking, in satellite image fusion, in snow-avalanche risk assessment, in multi-biometric match score fusion, in assessment of an attribute information retrieved based on the sensor data or human originated information, in sensor management, in automatic goal allocation for a planetary rover, in computer-aided medical diagnosis, in multiple camera fusion for tracking objects on ground plane, in object identification, in fusion of Electronic Support Measures allegiance report, in map regenerating forest stands, etc.

Advances and Applications of DSmT for Information Fusion (Collected Works. Volume 5)

Advances and Applications of DSmT for Information Fusion (Collected Works. Volume 5) PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Biography & Autobiography
Languages : en
Pages : 932

Get Book Here

Book Description
This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well. We want to thank all the contributors of this fifth volume for their research works and their interests in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions and comments on DSmT through the years. We thank the International Society of Information Fusion (www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the international fusion conferences series over the years. Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially sponsored him to attend international conferences, workshops and seminars on Information Fusion. Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the French Aerospace Lab (Office National d’E´tudes et de Recherches Ae´rospatiales), Palaiseau, France, for encouraging him to carry on this research and for its financial support. Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during more than 20 years to follow and share his smart and beautiful visions and ideas in the development of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to attend international conferences on Information Fusion.

Design of a Framework to Facilitate Decisions Using Information Fusion

Design of a Framework to Facilitate Decisions Using Information Fusion PDF Author: Tamer M. Abo Neama
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
Information fusion is an advanced research area which can assist decision makers in enhancing their decisions. This paper aims at designing a new multi-layer framework that can support the process of performing decisions from the obtained beliefs using information fusion. Since it is not an easy task to cross the gap between computed beliefs of certain hypothesis and decisions, the proposed framework consists of the following layers in order to provide a suitable architecture.

Target type tracking with DSmP

Target type tracking with DSmP PDF Author: Jean Dezert
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 19

Get Book Here

Book Description
In this chapter we analyze the performances of a new probabilistic belief transformation, denoted DSmP, for the sequential estimation of target ID from classifier outputs in the Target Type Tracking problem (TTT).

Sensor Fusion

Sensor Fusion PDF Author: Ciza Thomas
Publisher: BoD – Books on Demand
ISBN: 9533074469
Category : Computers
Languages : en
Pages : 242

Get Book Here

Book Description
Sensor Fusion - Foundation and Applications comprehensively covers the foundation and applications of sensor fusion. This book provides some novel ideas, theories, and solutions related to the research areas in the field of sensor fusion. The book explores some of the latest practices and research works in the area of sensor fusion. The book contains chapters with different methods of sensor fusion for different engineering as well as non-engineering applications. Advanced applications of sensor fusion in the areas of mobile robots, automatic vehicles, airborne threats, agriculture, medical field and intrusion detection are covered in this book. Sufficient evidences and analyses have been provided in the chapter to show the effectiveness of sensor fusion in various applications. This book would serve as an invaluable reference for professionals involved in various applications of sensor fusion.

The Geometry of Uncertainty

The Geometry of Uncertainty PDF Author: Fabio Cuzzolin
Publisher: Springer Nature
ISBN: 3030631532
Category : Computers
Languages : en
Pages : 850

Get Book Here

Book Description
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, The Geometry of Uncertainty, is the core of this book, as it introduces the author’s own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster’s rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster’s sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay of uncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence. The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.