Author: Alexander A. Ivanov
Publisher: Clarendon Press
ISBN: 0191523623
Category : Mathematics
Languages : en
Pages : 250
Book Description
This text illustrates how different methods of finite group theory including representation theory, cohomology theory, combinatorial group theory and local analysis are combined to construct one of the last of the sporadic finite simple groups - the fourth Janko group J_4. Aimed at graduates and researchers in group theory, geometry and algebra, Ivanov's approach is based on analysis of group amalgams and the geometry of the complexes of these amalgams with emphasis on the underlying theory. An indispensible resource, this book will be a unique and essential reference for researchers in the area. The author is a leading researcher in the field.
The Fourth Janko Group
Author: Alexander A. Ivanov
Publisher: Clarendon Press
ISBN: 0191523623
Category : Mathematics
Languages : en
Pages : 250
Book Description
This text illustrates how different methods of finite group theory including representation theory, cohomology theory, combinatorial group theory and local analysis are combined to construct one of the last of the sporadic finite simple groups - the fourth Janko group J_4. Aimed at graduates and researchers in group theory, geometry and algebra, Ivanov's approach is based on analysis of group amalgams and the geometry of the complexes of these amalgams with emphasis on the underlying theory. An indispensible resource, this book will be a unique and essential reference for researchers in the area. The author is a leading researcher in the field.
Publisher: Clarendon Press
ISBN: 0191523623
Category : Mathematics
Languages : en
Pages : 250
Book Description
This text illustrates how different methods of finite group theory including representation theory, cohomology theory, combinatorial group theory and local analysis are combined to construct one of the last of the sporadic finite simple groups - the fourth Janko group J_4. Aimed at graduates and researchers in group theory, geometry and algebra, Ivanov's approach is based on analysis of group amalgams and the geometry of the complexes of these amalgams with emphasis on the underlying theory. An indispensible resource, this book will be a unique and essential reference for researchers in the area. The author is a leading researcher in the field.
Blackie's Dictionary of Mathematics
Author: Blackie
Publisher: S. Chand Publishing
ISBN: 8121941555
Category : Reference
Languages : en
Pages : 368
Book Description
Dictionary
Publisher: S. Chand Publishing
ISBN: 8121941555
Category : Reference
Languages : en
Pages : 368
Book Description
Dictionary
Surveys in Combinatorics 2024
Author: Felix Fischer
Publisher: Cambridge University Press
ISBN: 1009490540
Category : Mathematics
Languages : en
Pages : 306
Book Description
This volume contains nine survey articles by the invited speakers of the 30th British Combinatorial Conference, held at Queen Mary University of London in July 2024. Each article provides an overview of recent developments in a current hot research topic in combinatorics. Topics covered include: Latin squares, Erdős covering systems, finite field models, sublinear expanders, cluster expansion, the slice rank polynomial method, and oriented trees and paths in digraphs. The authors are among the world's foremost researchers on their respective topics but their surveys are accessible to nonspecialist readers: they are written clearly with little prior knowledge assumed and with pointers to the wider literature. Taken together these surveys give a snapshot of the research frontier in contemporary combinatorics, helping researchers and graduate students in mathematics and theoretical computer science to keep abreast of the latest developments in the field.
Publisher: Cambridge University Press
ISBN: 1009490540
Category : Mathematics
Languages : en
Pages : 306
Book Description
This volume contains nine survey articles by the invited speakers of the 30th British Combinatorial Conference, held at Queen Mary University of London in July 2024. Each article provides an overview of recent developments in a current hot research topic in combinatorics. Topics covered include: Latin squares, Erdős covering systems, finite field models, sublinear expanders, cluster expansion, the slice rank polynomial method, and oriented trees and paths in digraphs. The authors are among the world's foremost researchers on their respective topics but their surveys are accessible to nonspecialist readers: they are written clearly with little prior knowledge assumed and with pointers to the wider literature. Taken together these surveys give a snapshot of the research frontier in contemporary combinatorics, helping researchers and graduate students in mathematics and theoretical computer science to keep abreast of the latest developments in the field.
Symmetry and the Monster
Author: Mark Ronan
Publisher: Oxford University Press
ISBN: 0192807234
Category : Biography & Autobiography
Languages : en
Pages : 264
Book Description
In an exciting, fast-paced historical narrative ranging across two centuries, Ronan takes readers on an exhilarating tour of this final mathematical quest to understand symmetry.
Publisher: Oxford University Press
ISBN: 0192807234
Category : Biography & Autobiography
Languages : en
Pages : 264
Book Description
In an exciting, fast-paced historical narrative ranging across two centuries, Ronan takes readers on an exhilarating tour of this final mathematical quest to understand symmetry.
The Finite Simple Groups
Author: Robert Wilson
Publisher: Springer Science & Business Media
ISBN: 1848009879
Category : Mathematics
Languages : en
Pages : 310
Book Description
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
Publisher: Springer Science & Business Media
ISBN: 1848009879
Category : Mathematics
Languages : en
Pages : 310
Book Description
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
Groups St Andrews 2009 in Bath: Volume 2
Author: C. M. Campbell
Publisher: Cambridge University Press
ISBN: 1139498282
Category : Mathematics
Languages : en
Pages : 305
Book Description
This second volume of a two-volume book contains selected papers from the international conference Groups St Andrews 2009. Leading researchers in their respective areas, including Eammon O'Brien, Mark Sapir and Dan Segal, survey the latest developments in algebra.
Publisher: Cambridge University Press
ISBN: 1139498282
Category : Mathematics
Languages : en
Pages : 305
Book Description
This second volume of a two-volume book contains selected papers from the international conference Groups St Andrews 2009. Leading researchers in their respective areas, including Eammon O'Brien, Mark Sapir and Dan Segal, survey the latest developments in algebra.
Orthogonal Latin Squares Based on Groups
Author: Anthony B. Evans
Publisher: Springer
ISBN: 3319944304
Category : Mathematics
Languages : en
Pages : 537
Book Description
This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall–Paige conjecture. The use of latin squares in constructions of nets, affine planes, projective planes, and transversal designs also motivates this inquiry. The text begins by introducing fundamental concepts, like the tests for determining whether a latin square is based on a group, as well as orthomorphisms and complete mappings. From there, it describes the existence problem for complete mappings of groups, building up to the proof of the Hall–Paige conjecture. The third part presents a comprehensive study of orthomorphism graphs of groups, while the last part provides a discussion of Cartesian projective planes, related combinatorial structures, and a list of open problems. Expanding the author’s 1992 monograph, Orthomorphism Graphs of Groups, this book is an essential reference tool for mathematics researchers or graduate students tackling latin square problems in combinatorics. Its presentation draws on a basic understanding of finite group theory, finite field theory, linear algebra, and elementary number theory—more advanced theories are introduced in the text as needed.
Publisher: Springer
ISBN: 3319944304
Category : Mathematics
Languages : en
Pages : 537
Book Description
This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall–Paige conjecture. The use of latin squares in constructions of nets, affine planes, projective planes, and transversal designs also motivates this inquiry. The text begins by introducing fundamental concepts, like the tests for determining whether a latin square is based on a group, as well as orthomorphisms and complete mappings. From there, it describes the existence problem for complete mappings of groups, building up to the proof of the Hall–Paige conjecture. The third part presents a comprehensive study of orthomorphism graphs of groups, while the last part provides a discussion of Cartesian projective planes, related combinatorial structures, and a list of open problems. Expanding the author’s 1992 monograph, Orthomorphism Graphs of Groups, this book is an essential reference tool for mathematics researchers or graduate students tackling latin square problems in combinatorics. Its presentation draws on a basic understanding of finite group theory, finite field theory, linear algebra, and elementary number theory—more advanced theories are introduced in the text as needed.
Cyclic Modules and the Structure of Rings
Author: S. K. Jain
Publisher: Oxford University Press
ISBN: 0191641545
Category : Mathematics
Languages : en
Pages :
Book Description
This unique and comprehensive volume provides an up-to-date account of the literature on the subject of determining the structure of rings over which cyclic modules or proper cyclic modules have a finiteness condition or a homological property. The finiteness conditions and homological properties are closely interrelated in the sense that either hypothesis induces the other in some form. This is the first book to bring all of this important material on the subject together. Over the last 25 years or more numerous mathematicians have investigated rings whose factor rings or factor modules have a finiteness condition or a homological property. They made important contributions leading to new directions and questions, which are listed at the end of each chapter for the benefit of future researchers. There is a wealth of material on the topic which is combined in this book, it contains more than 200 references and is not claimed to be exhaustive. This book will appeal to graduate students, researchers, and professionals in algebra with a knowledge of basic noncommutative ring theory, as well as module theory and homological algebra, equivalent to a one-year graduate course in the theory of rings and modules.
Publisher: Oxford University Press
ISBN: 0191641545
Category : Mathematics
Languages : en
Pages :
Book Description
This unique and comprehensive volume provides an up-to-date account of the literature on the subject of determining the structure of rings over which cyclic modules or proper cyclic modules have a finiteness condition or a homological property. The finiteness conditions and homological properties are closely interrelated in the sense that either hypothesis induces the other in some form. This is the first book to bring all of this important material on the subject together. Over the last 25 years or more numerous mathematicians have investigated rings whose factor rings or factor modules have a finiteness condition or a homological property. They made important contributions leading to new directions and questions, which are listed at the end of each chapter for the benefit of future researchers. There is a wealth of material on the topic which is combined in this book, it contains more than 200 references and is not claimed to be exhaustive. This book will appeal to graduate students, researchers, and professionals in algebra with a knowledge of basic noncommutative ring theory, as well as module theory and homological algebra, equivalent to a one-year graduate course in the theory of rings and modules.
Spectral Theory and Differential Operators
Author: David Eric Edmunds
Publisher: Oxford University Press
ISBN: 0198812051
Category : Mathematics
Languages : en
Pages : 610
Book Description
This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.
Publisher: Oxford University Press
ISBN: 0198812051
Category : Mathematics
Languages : en
Pages : 610
Book Description
This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.
On the Topology and Future Stability of the Universe
Author: Hans Ringström
Publisher: OUP Oxford
ISBN: 0191669776
Category : Mathematics
Languages : en
Pages : 733
Book Description
The standard starting point in cosmology is the cosmological principle; the assumption that the universe is spatially homogeneous and isotropic. After imposing this assumption, the only freedom left, as far as the geometry is concerned, is the choice of one out of three permissible spatial geometries, and one scalar function of time. Combining the cosmological principle with an appropriate description of the matter leads to the standard models. It is worth noting that these models yield quite a successful description of our universe. However, even though the universe may, or may not, be almost spatially homogeneous and isotropic, it is clear that the cosmological principle is not exactly satisfied. This leads to several questions. The most natural one concerns stability: given initial data corresponding to an expanding model of the standard type, do small perturbations give rise to solutions that are similar to the future? Another question concerns the shape of the universe: what are the restrictions if we only assume the universe to appear almost spatially homogeneous and isotropic to every observer? The main purpose of the book is to address these questions. However, to begin with, it is necessary to develop the general theory of the Cauchy problem for the Einstein-Vlasov equations. In order to to make the results accessible to researchers who are not mathematicians, but who are familiar with general relativity, the book contains an extensive prologue putting the results into a more general context.
Publisher: OUP Oxford
ISBN: 0191669776
Category : Mathematics
Languages : en
Pages : 733
Book Description
The standard starting point in cosmology is the cosmological principle; the assumption that the universe is spatially homogeneous and isotropic. After imposing this assumption, the only freedom left, as far as the geometry is concerned, is the choice of one out of three permissible spatial geometries, and one scalar function of time. Combining the cosmological principle with an appropriate description of the matter leads to the standard models. It is worth noting that these models yield quite a successful description of our universe. However, even though the universe may, or may not, be almost spatially homogeneous and isotropic, it is clear that the cosmological principle is not exactly satisfied. This leads to several questions. The most natural one concerns stability: given initial data corresponding to an expanding model of the standard type, do small perturbations give rise to solutions that are similar to the future? Another question concerns the shape of the universe: what are the restrictions if we only assume the universe to appear almost spatially homogeneous and isotropic to every observer? The main purpose of the book is to address these questions. However, to begin with, it is necessary to develop the general theory of the Cauchy problem for the Einstein-Vlasov equations. In order to to make the results accessible to researchers who are not mathematicians, but who are familiar with general relativity, the book contains an extensive prologue putting the results into a more general context.