The Finite-Difference Modelling of Earthquake Motions

The Finite-Difference Modelling of Earthquake Motions PDF Author: Peter Moczo
Publisher: Cambridge University Press
ISBN: 1107028817
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
A systematic tutorial introduction to the finite-difference (FD) numerical modelling technique for professionals, academic researchers, and graduate students in seismology.

The Finite-Difference Modelling of Earthquake Motions

The Finite-Difference Modelling of Earthquake Motions PDF Author: Peter Moczo
Publisher: Cambridge University Press
ISBN: 1107028817
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
A systematic tutorial introduction to the finite-difference (FD) numerical modelling technique for professionals, academic researchers, and graduate students in seismology.

The Finite-Difference Modelling of Earthquake Motions

The Finite-Difference Modelling of Earthquake Motions PDF Author: Peter Moczo
Publisher: Cambridge University Press
ISBN: 1139867695
Category : Science
Languages : en
Pages : 387

Get Book Here

Book Description
Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.

The Finite-Difference Modelling of Earthquake Motions

The Finite-Difference Modelling of Earthquake Motions PDF Author: Peter Moczo
Publisher:
ISBN: 9781139868723
Category : Finite differences
Languages : en
Pages :

Get Book Here

Book Description


Encyclopedia of Earthquake Engineering

Encyclopedia of Earthquake Engineering PDF Author: Michael Beer
Publisher: Springer
ISBN: 9783642353437
Category : Technology & Engineering
Languages : en
Pages : 3953

Get Book Here

Book Description
The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 300 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well informed without needing to deal with the details of specialist understanding. The encyclopedia’s content provides technically-inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encyclopedia also aims to provide cross-disciplinary and cross-domain information to domain-experts. This is the first single reference encyclopedia of this breadth and scope that brings together the science, engineering and technological aspects of earthquakes and structures.

The Finite-difference Method for Seismologists

The Finite-difference Method for Seismologists PDF Author: Peter Moczo
Publisher:
ISBN: 9788022320009
Category : Finite differences
Languages : en
Pages : 150

Get Book Here

Book Description


Stochastic Model for Earthquake Ground Motion Using Wavelet Packets

Stochastic Model for Earthquake Ground Motion Using Wavelet Packets PDF Author: Yoshifumi Yamamoto
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 329

Get Book Here

Book Description
For performance-based design, nonlinear dynamic structural analysis for various types of input ground motions is required. Stochastic (simulated) ground motions are sometimes useful as input motions, because unlike recorded motions they are not limited in number and because their properties can be varied systematically to study the impact of ground motion properties on structural response. This dissertation describes an approach by which the wavelet packet transform can be used to characterize complex time-varying earthquake ground motions, and it illustrates the potential benefits of such an approach in a variety of earthquake engineering applications. The proposed model is based on Thr´ainsson and Kiremidjian (2002), which use Fourier amplitudes and phase differences to simulate ground motions and attenuation models to their model parameters. We extend their model using wavelet packet transform since it can control the time and frequency characteristic of time series. The time- and frequency-varying properties of real ground motions can be captured using wavelet packets, so a model is developed that requires only 13 parameters to describe a given ground motion. These 13 parameters are then related to seismological variables such as earthquake magnitude, distance, and site condition, through regression analysis that captures trends in mean values, standard deviations and correlations of these parameters observed in a large database of recorded strong ground motions. The resulting regression equations then form a model that can be used to predict ground motions for a future earthquake scenario; this model is analogous to widely used empirical ground motion prediction models (formerly called "attenuation models") except that this model predicts entire time series rather than only response spectra. The ground motions produced using this predictive model are explored in detail, and are shown to have elastic response spectra, inelastic response spectra, durations, mean periods, etc., that are consistent in both mean and variability to existing published predictive models for those properties. That consistency allows the proposed model to be used in place of existing models for probabilistic seismic hazard analysis (PSHA) calculations. This new way to calculate PSHA is termed "simulation-based probabilistic seismic hazard analysis" and it allows a deeper understanding of ground motion hazard and hazard deaggregation than is possible with traditional PSHA because it produces a suite of potential ground motion time histories rather than simply a distribution of response spectra. The potential benefits of this approach are demonstrated and explored in detail. Taking this analysis even further, this suite of time histories can be used as input for nonlinear dynamic analysis of structures, to perform a risk analysis (i.e., "probabilistic seismic demand analysis") that allows computation of the probability of the structure exceeding some level of response in a future earthquake. These risk calculations are often performed today using small sets of scaled recorded ground motions, but that approach requires a variety of assumptions regarding important properties of ground motions, the impacts of ground motion scaling, etc. The approach proposed here facilitates examination of those assumptions, and provides a variety of other relevant information not obtainable by that traditional approach.

Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations

Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations PDF Author: Luis A. Dalguer
Publisher: Birkhäuser
ISBN: 3319727095
Category : Science
Languages : en
Pages : 333

Get Book Here

Book Description
This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and physics-based ground motion modeling to engineering applications of simulated ground motion for the analysis of seismic response of structures. Further, it includes papers describing current practices for assessing seismic hazard in terms of nuclear safety in low seismicity areas, and proposals for physics-based hazard assessment for critical structures near large earthquakes. The papers validate and verify the models by comparing synthetic results with observed data and empirical models. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA.

Earthquakes

Earthquakes PDF Author: Peter Moczo
Publisher: Springer Nature
ISBN: 3031647076
Category :
Languages : en
Pages : 235

Get Book Here

Book Description


Mathematical Modeling in Cultural Heritage

Mathematical Modeling in Cultural Heritage PDF Author: Gabriella Bretti
Publisher: Springer Nature
ISBN: 9819936799
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
This book collects contributions presented at the INdAM Workshop "Mathematical modeling and Analysis of degradation and restoration in Cultural Heritage–MACH2021", held in Rome, Italy in September 2021. The book is focused on mathematical modeling and simulation techniques with the aim of improving the current strategies of conservation and restoration in cultural heritage, sharing different experiences and approaches. The main topics are corrosion and sulphation of materials, damage and fractures, stress in thermomechanical systems, contact and adhesion problems, and phase transitions.

The Seismic Wavefield: Volume 1, Introduction and Theoretical Development

The Seismic Wavefield: Volume 1, Introduction and Theoretical Development PDF Author: B. L. N. Kennett
Publisher: Cambridge University Press
ISBN: 9780521006637
Category : Science
Languages : en
Pages : 384

Get Book Here

Book Description
This book provides a guide to understanding of seismograms for graduate students, researchers, professionals in academia and the petroleum industry.