The Fast Multipole Boundary Element Method and Its Application to Structure-acoustic Field Interaction

The Fast Multipole Boundary Element Method and Its Application to Structure-acoustic Field Interaction PDF Author: Matthias Fischer
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

The Fast Multipole Boundary Element Method and Its Application to Structure-acoustic Field Interaction

The Fast Multipole Boundary Element Method and Its Application to Structure-acoustic Field Interaction PDF Author: Matthias Fischer
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Fast Multipole Boundary Element Method

Fast Multipole Boundary Element Method PDF Author: Yijun Liu
Publisher: Cambridge University Press
ISBN: 113947944X
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
The fast multipole method is one of the most important algorithms in computing developed in the 20th century. Along with the fast multipole method, the boundary element method (BEM) has also emerged as a powerful method for modeling large-scale problems. BEM models with millions of unknowns on the boundary can now be solved on desktop computers using the fast multipole BEM. This is the first book on the fast multipole BEM, which brings together the classical theories in BEM formulations and the recent development of the fast multipole method. Two- and three-dimensional potential, elastostatic, Stokes flow, and acoustic wave problems are covered, supplemented with exercise problems and computer source codes. Applications in modeling nanocomposite materials, bio-materials, fuel cells, acoustic waves, and image-based simulations are demonstrated to show the potential of the fast multipole BEM. Enables students, researchers, and engineers to learn the BEM and fast multipole method from a single source.

Recent Advances in Boundary Element Methods

Recent Advances in Boundary Element Methods PDF Author: George Manolis
Publisher: Springer Science & Business Media
ISBN: 1402097107
Category : Technology & Engineering
Languages : en
Pages : 467

Get Book Here

Book Description
This volume, dedicated to Professor Dimitri Beskos, contains contributions from leading researchers in Europe, the USA, Japan and elsewhere, and addresses the needs of the computational mechanics research community in terms of timely information on boundary integral equation-based methods and techniques applied to a variety of fields. The contributors are well-known scientists, who also happen to be friends, collaborators as past students of Dimitri Beskos. Dimitri is one the BEM pioneers who started his career at the University of Minnesota in Minneapolis, USA, in the 1970s and is now with the University of Patras in Patras, Greece. The book is essentially a collection of both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the newer Mesh Reduction Methods (MRM), covering a variety of research topics. Close to forty contributions compose an over-500 page volume that is rich in detail and wide in terms of breadth of coverage of the subject of integral equation formulations and solutions in both solid and fluid mechanics.

Recent Developments in Boundary Element Methods

Recent Developments in Boundary Element Methods PDF Author: Evangelous J. Sapountzakis
Publisher: WIT Press
ISBN: 1845644921
Category : Technology & Engineering
Languages : en
Pages : 417

Get Book Here

Book Description
This Festschrift is a collection of articles contributed by colleagues, collaborators and past students to honor Professor John T. Katsikadelis on the occasion of his 70 years. Professor Katsikadelis, now an emeritus professor at the National Technical University of Athens in Greece, is one of the BEM pioneers who started his research in this field with his PhD thesis at the Polytechnic Institute of New York in the 1970s and continued it to date.The book comprises 26 contributions by more than 50 leading researchers in Boundary Element Methods (BEM) and other Mesh Reduction Methods (MRM). All contributors are well-known scientists from Asia, Australia, Europe, and North and South America. The volume is essentially a collection of both original and review articles covering a variety of research topics in the areas of solid mechanics, fluid mechanics, potential theory, composite materials, fracture mechanics, damage mechanics, plasticity, heat transfer, dynamics and vibrations and soil-structure interaction. Invaluable to scientists, engineers and other professionals interested in the latest developments of the boundary integral equation methods, it addresses the needs of the BEM computational mechanics research community.The book is written for: researchers in academia and industry and graduate students focusing on solid and fluid mechanics as used in civil, mechanical and aerospace engineering.

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods PDF Author: Steffen Marburg
Publisher: Springer Science & Business Media
ISBN: 3540774483
Category : Science
Languages : en
Pages : 584

Get Book Here

Book Description
The book provides a survey of numerical methods for acoustics, namely the finite element method (FEM) and the boundary element method (BEM). It is the first book summarizing FEM and BEM (and optimization) for acoustics. The book shows that both methods can be effectively used for many other cases, FEM even for open domains and BEM for closed ones. Emphasis of the book is put on numerical aspects and on treatment of the exterior problem in acoustics, i.e. noise radiation.

Fast Multipole Methods for the Helmholtz Equation in Three Dimensions

Fast Multipole Methods for the Helmholtz Equation in Three Dimensions PDF Author: Nail A Gumerov
Publisher: Elsevier
ISBN: 0080531598
Category : Mathematics
Languages : en
Pages : 551

Get Book Here

Book Description
This volume in the Elsevier Series in Electromagnetism presents a detailed, in-depth and self-contained treatment of the Fast Multipole Method and its applications to the solution of the Helmholtz equation in three dimensions. The Fast Multipole Method was pioneered by Rokhlin and Greengard in 1987 and has enjoyed a dramatic development and recognition during the past two decades. This method has been described as one of the best 10 algorithms of the 20th century. Thus, it is becoming increasingly important to give a detailed exposition of the Fast Multipole Method that will be accessible to a broad audience of researchers. This is exactly what the authors of this book have accomplished. For this reason, it will be a valuable reference for a broad audience of engineers, physicists and applied mathematicians. The Only book that provides comprehensive coverage of this topic in one location Presents a review of the basic theory of expansions of the Helmholtz equation solutions Comprehensive description of both mathematical and practical aspects of the fast multipole method and it's applications to issues described by the Helmholtz equation

Multifield Problems in Solid and Fluid Mechanics

Multifield Problems in Solid and Fluid Mechanics PDF Author: Rainer Helmig
Publisher: Springer Science & Business Media
ISBN: 3540349618
Category : Technology & Engineering
Languages : en
Pages : 569

Get Book Here

Book Description
This book gives an overview of the research projects within the SFB 404 "Mehrfeldprobleme in der Kontinuumsmechanik". The book is for researchers and graduate students in applied mechanics and civil engineering.

Boundary Element Acoustics

Boundary Element Acoustics PDF Author:
Publisher:
ISBN:
Category : Acoustical engineering
Languages : en
Pages : 274

Get Book Here

Book Description


Fluid Structure Interaction and Moving Boundary Problems IV

Fluid Structure Interaction and Moving Boundary Problems IV PDF Author: Subrata Kumar Chakrabarti
Publisher: WIT Press
ISBN: 1845640721
Category : Science
Languages : en
Pages : 369

Get Book Here

Book Description
Publishing papers presented at the Fourth International Conference on Fluid Structure Interactions, this book features contributions from experts specialising in this field on new ideas and the latest techniques. A valuable addition to this successful series and will be of great interest to mechanical and structural engineers, offshore engineers, earthquake engineers, naval engineers and any other experts involved in topics related to fluid structure interaction. Topics covered include: Hydrodynamic Forces; Response of Structures including Fluid Dynamic; Offshore Structure and Ship Dynamics; Fluid Pipeline Interactions; Structure Response to Serve Shock and Blast Loading; Vortex Shedding and Flow Induced Vibrations; Cavitations Effects in Turbo Machines and Pumps; Wind Effects on Bridges and Tall Structures; Mechanics of Cables, Rivers and Moorings; Building Biofluids and Biological Tissue Interaction Problems in CFD; Experimental Studies and Validation; Vibrations and Noise; Free Surface Flows and Moving Boundary Problems.

Adaptive Fast Multipole Boundary Element Methods for Three-dimensional Potential and Acoustic Wave Problems

Adaptive Fast Multipole Boundary Element Methods for Three-dimensional Potential and Acoustic Wave Problems PDF Author: Liang Shen
Publisher:
ISBN:
Category :
Languages : en
Pages : 122

Get Book Here

Book Description
As a numerical method used in the simulations of many potential and acoustic problems, the boundary element method (BEM) has suffered from high solution cost for quite some time, although it has the advantage in the modeling or meshing stage. One way to improve the solution efficiency of the BEM is to use the fast multipole method (FMM). The reduction of the computing cost with the FMM is achieved by using multilevel clustering of the boundary elements, the use of multipole expansions of the fundamental solutions and adaptive fast multipole algorithms. In combination with iterative solvers, the fast multipole boundary element method (FMBEM) is capable of solving many large-scale 3-D problems on desktop PCs. In this dissertation, 3-D adaptive fast multipole boundary element methods for solving large-scale potential (e.g., thermal and electrostatic) and acoustic wave problems are developed. For large-scale potential problems, an adaptive fast multipole algorithm is developed in the FMBEM implementation. The conventional boundary integral equation (CBIE), hyper-singular boundary integral equation (HBIE) and their combination, dual boundary integral equation (CHBIE), are adopted and can be selectively chosen to solve different models. Both the conventional and the new fast multipole method with diagonal translations are implemented and their performances are compared. Implementation issues related to reusing the pre-conditioner and storing the coefficients to further improve the efficiency are addressed. Numerical examples, ranging from simple block models to heat sink and large-scale models of micro-electro-mechanical-systems are tested and presented. For large-scale acoustic problems, a modified version of adaptive fast multipole algorithm is developed for full-space problems first. The Burton-Miller formulation using a linear combination of the CBIE and HBIE is used to overcome the non-uniqueness difficulties in the BIEs for exterior problems. Several large-scale radiation and scattering problems, including scattering and radiating spheres and an engine model are tested. Then, the full-space algorithm is further modified and extended to solving half-space problems. Instead of using a tree structure that contains both real domain and its mirror image, the same tree structure that has been used in the full-space domain is used in the half-pace domain, which greatly simplifies the implementation of half-space FMBEM and reduces the memory storage size. Several examples including spheres sitting on the ground and sound barriers are tested. All the numerical examples of the potential and acoustic problems presented in this dissertation clearly demonstrate the effectiveness and efficiency of the developed adaptive fast multipole boundary element methods. The adaptive FMBEM code for potential problems and the adaptive FMEBM code for acoustic problems have been integrated in a single software package, which is well structured, modularized and extendable to handling other types of problems. Three journal papers have been published based on the work reported in this dissertation, and one journal paper on the half-space problem is in preparation. This dissertation research has significantly advanced the FMBEM for solving large-scale 3-D potential and acoustic problems. The developed adaptive fast multipole algorithms can be easily extended to the FMBEM for 3-D single-domain elasticity, Stokes flow, and multi-domain potential, acoustic, elasticity and Stokes problems for applications in large-scale modeling of composites, functionally-graded materials, micro-electro-mechanical-systems, and biological materials and fluids.