Author: Paul C. Rosenbloom
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 234
Book Description
"This book is intended for readers who, while mature mathematically, have no knowledge of mathematical logic. We attempt to introduce the reader to the most important approaches to the subject, and, wherever possible within the limitations of space which we have set for ourselves, to give at least a few nontrivial results illustrating each of the important methods for attacking logical problems"--Preface.
The Elements of Mathematical Logic
Elements of Mathematical Logic and Set Theory
Author: Jerzy Słupecki
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 374
Book Description
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 374
Book Description
Elements of Mathematical Logic
Author: Georg Kreisel
Publisher: Elsevier
ISBN: 9780444534125
Category : Electronic books
Languages : en
Pages : 222
Book Description
Publisher: Elsevier
ISBN: 9780444534125
Category : Electronic books
Languages : en
Pages : 222
Book Description
Mathematical Logic
Author: Wei Li
Publisher: Springer Science & Business Media
ISBN: 3764399775
Category : Mathematics
Languages : en
Pages : 273
Book Description
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
Publisher: Springer Science & Business Media
ISBN: 3764399775
Category : Mathematics
Languages : en
Pages : 273
Book Description
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
Elements of Logic via Numbers and Sets
Author: D.L. Johnson
Publisher: Springer Science & Business Media
ISBN: 1447106032
Category : Mathematics
Languages : en
Pages : 179
Book Description
In mathematics we are interested in why a particular formula is true. Intuition and statistical evidence are insufficient, so we need to construct a formal logical proof. The purpose of this book is to describe why such proofs are important, what they are made of, how to recognize valid ones, how to distinguish different kinds, and how to construct them. This book is written for 1st year students with no previous experience of formulating proofs. Dave Johnson has drawn from his considerable experience to provide a text that concentrates on the most important elements of the subject using clear, simple explanations that require no background knowledge of logic. It gives many useful examples and problems, many with fully-worked solutions at the end of the book. In addition to a comprehensive index, there is also a useful `Dramatis Personae` an index to the many symbols introduced in the text, most of which will be new to students and which will be used throughout their degree programme.
Publisher: Springer Science & Business Media
ISBN: 1447106032
Category : Mathematics
Languages : en
Pages : 179
Book Description
In mathematics we are interested in why a particular formula is true. Intuition and statistical evidence are insufficient, so we need to construct a formal logical proof. The purpose of this book is to describe why such proofs are important, what they are made of, how to recognize valid ones, how to distinguish different kinds, and how to construct them. This book is written for 1st year students with no previous experience of formulating proofs. Dave Johnson has drawn from his considerable experience to provide a text that concentrates on the most important elements of the subject using clear, simple explanations that require no background knowledge of logic. It gives many useful examples and problems, many with fully-worked solutions at the end of the book. In addition to a comprehensive index, there is also a useful `Dramatis Personae` an index to the many symbols introduced in the text, most of which will be new to students and which will be used throughout their degree programme.
Mathematical Logic
Author: Roman Kossak
Publisher: Springer
ISBN: 3319972987
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Publisher: Springer
ISBN: 3319972987
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Mathematical Logic and Model Theory
Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 1447121767
Category : Mathematics
Languages : en
Pages : 198
Book Description
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
Publisher: Springer Science & Business Media
ISBN: 1447121767
Category : Mathematics
Languages : en
Pages : 198
Book Description
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
The VNR Concise Encyclopedia of Mathematics
Author: W. Gellert
Publisher: Springer Science & Business Media
ISBN: 1468482378
Category : Science
Languages : en
Pages : 815
Book Description
It is commonplace that in our time science and technology cannot be mastered without the tools of mathematics; but the same applies to an ever growing extent to many domains of everyday life, not least owing to the spread of cybernetic methods and arguments. As a consequence, there is a wide demand for a survey of the results of mathematics, for an unconventional approach that would also make it possible to fill gaps in one's knowledge. We do not think that a mere juxtaposition of theorems or a collection of formulae would be suitable for this purpose, because this would over emphasize the symbolic language of signs and letters rather than the mathematical idea, the only thing that really matters. Our task was to describe mathematical interrelations as briefly and precisely as possible. In view of the overwhelming amount of material it goes without saying that we did not just compile details from the numerous text-books for individual branches: what we were aiming at is to smooth out the access to the specialist literature for as many readers as possible. Since well over 700000 copies of the German edition of this book have been sold, we hope to have achieved our difficult goal. Colours are used extensively to help the reader. Important definitions and groups of formulae are on a yellow background, examples on blue, and theorems on red.
Publisher: Springer Science & Business Media
ISBN: 1468482378
Category : Science
Languages : en
Pages : 815
Book Description
It is commonplace that in our time science and technology cannot be mastered without the tools of mathematics; but the same applies to an ever growing extent to many domains of everyday life, not least owing to the spread of cybernetic methods and arguments. As a consequence, there is a wide demand for a survey of the results of mathematics, for an unconventional approach that would also make it possible to fill gaps in one's knowledge. We do not think that a mere juxtaposition of theorems or a collection of formulae would be suitable for this purpose, because this would over emphasize the symbolic language of signs and letters rather than the mathematical idea, the only thing that really matters. Our task was to describe mathematical interrelations as briefly and precisely as possible. In view of the overwhelming amount of material it goes without saying that we did not just compile details from the numerous text-books for individual branches: what we were aiming at is to smooth out the access to the specialist literature for as many readers as possible. Since well over 700000 copies of the German edition of this book have been sold, we hope to have achieved our difficult goal. Colours are used extensively to help the reader. Important definitions and groups of formulae are on a yellow background, examples on blue, and theorems on red.
Mathematical Logic
Author: Ian Chiswell
Publisher: OUP Oxford
ISBN: 0191524808
Category : Mathematics
Languages : en
Pages : 259
Book Description
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.
Publisher: OUP Oxford
ISBN: 0191524808
Category : Mathematics
Languages : en
Pages : 259
Book Description
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.
Elements of Set Theory
Author: Herbert B. Enderton
Publisher: Academic Press
ISBN: 0080570429
Category : Mathematics
Languages : en
Pages : 294
Book Description
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
Publisher: Academic Press
ISBN: 0080570429
Category : Mathematics
Languages : en
Pages : 294
Book Description
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.