Author: W.E. Baker
Publisher: Elsevier
ISBN: 0444599886
Category : Political Science
Languages : en
Pages : 840
Book Description
Explosion Hazards and Evaluation presents the principles and applications of explosion hazards evaluation. The text is organized into nine chapters. Chapters 1 and 2 discuss the energy release processes which generate accidental explosions, and the resulting development of pressure and shock waves in a surrounding atmosphere. The manner in which the "free-field" waves are modified in interacting with structures or other objects in their paths is discussed in Chapter 3. Structural response to blast loading and non-penetrating impact is covered in two chapters, with Chapter 4 including simplified analysis methods and Chapter 5 including numerical methods. Chapter 6 includes a rather comprehensive treatment of generation of fragments and missiles in explosions, and the flight and effects of impact of these objects. Chapter 7 considers thermal radiation of large chemical explosions. Explosions may or may not cause damage or casualty, and various damage criteria have been developed for structures, vehicles, and people. These criteria are presented in Chapter 8. General procedures for both the postmortem evaluation of accidental explosions and for design for blast and impact resistance are reviewed in Chapter 9. Engineers, scientists, and plant safety personnel will find the book very useful.
Explosion Hazards and Evaluation
Author: W.E. Baker
Publisher: Elsevier
ISBN: 0444599886
Category : Political Science
Languages : en
Pages : 840
Book Description
Explosion Hazards and Evaluation presents the principles and applications of explosion hazards evaluation. The text is organized into nine chapters. Chapters 1 and 2 discuss the energy release processes which generate accidental explosions, and the resulting development of pressure and shock waves in a surrounding atmosphere. The manner in which the "free-field" waves are modified in interacting with structures or other objects in their paths is discussed in Chapter 3. Structural response to blast loading and non-penetrating impact is covered in two chapters, with Chapter 4 including simplified analysis methods and Chapter 5 including numerical methods. Chapter 6 includes a rather comprehensive treatment of generation of fragments and missiles in explosions, and the flight and effects of impact of these objects. Chapter 7 considers thermal radiation of large chemical explosions. Explosions may or may not cause damage or casualty, and various damage criteria have been developed for structures, vehicles, and people. These criteria are presented in Chapter 8. General procedures for both the postmortem evaluation of accidental explosions and for design for blast and impact resistance are reviewed in Chapter 9. Engineers, scientists, and plant safety personnel will find the book very useful.
Publisher: Elsevier
ISBN: 0444599886
Category : Political Science
Languages : en
Pages : 840
Book Description
Explosion Hazards and Evaluation presents the principles and applications of explosion hazards evaluation. The text is organized into nine chapters. Chapters 1 and 2 discuss the energy release processes which generate accidental explosions, and the resulting development of pressure and shock waves in a surrounding atmosphere. The manner in which the "free-field" waves are modified in interacting with structures or other objects in their paths is discussed in Chapter 3. Structural response to blast loading and non-penetrating impact is covered in two chapters, with Chapter 4 including simplified analysis methods and Chapter 5 including numerical methods. Chapter 6 includes a rather comprehensive treatment of generation of fragments and missiles in explosions, and the flight and effects of impact of these objects. Chapter 7 considers thermal radiation of large chemical explosions. Explosions may or may not cause damage or casualty, and various damage criteria have been developed for structures, vehicles, and people. These criteria are presented in Chapter 8. General procedures for both the postmortem evaluation of accidental explosions and for design for blast and impact resistance are reviewed in Chapter 9. Engineers, scientists, and plant safety personnel will find the book very useful.
Limit Analysis and Concrete Plasticity
Author: M.P. Nielsen
Publisher: CRC Press
ISBN: 1439803978
Category : Science
Languages : en
Pages : 810
Book Description
First published in 1984, Limit Analysis and Concrete Plasticity explains for advanced design engineers the principles of plasticity theory and its application to the design of reinforced and prestressed concrete structures, providing a thorough understanding of the subject, rather than simply applying current design formulas. Updated and revised th
Publisher: CRC Press
ISBN: 1439803978
Category : Science
Languages : en
Pages : 810
Book Description
First published in 1984, Limit Analysis and Concrete Plasticity explains for advanced design engineers the principles of plasticity theory and its application to the design of reinforced and prestressed concrete structures, providing a thorough understanding of the subject, rather than simply applying current design formulas. Updated and revised th
Plasticity in Reinforced Concrete
Author: Wai-Fah Chen
Publisher: J. Ross Publishing
ISBN: 9781932159745
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
J. Ross Publishing Classics are world-renowned texts and monographs written bt preeminent scholars. These books are available to students, researchers, professionals, and libararies.
Publisher: J. Ross Publishing
ISBN: 9781932159745
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
J. Ross Publishing Classics are world-renowned texts and monographs written bt preeminent scholars. These books are available to students, researchers, professionals, and libararies.
Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary
Author: ACI Committee 318
Publisher: American Concrete Institute
ISBN: 0870312642
Category : Building laws
Languages : en
Pages : 471
Book Description
The quality and testing of materials used in construction are covered by reference to the appropriate ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard. Uses of the Code include adoption by reference in general building codes, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code portion cannot be included. The Commentary is provided for this purpose. Some of the considerations of the committee in developing the Code portion are discussed within the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.
Publisher: American Concrete Institute
ISBN: 0870312642
Category : Building laws
Languages : en
Pages : 471
Book Description
The quality and testing of materials used in construction are covered by reference to the appropriate ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard. Uses of the Code include adoption by reference in general building codes, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code portion cannot be included. The Commentary is provided for this purpose. Some of the considerations of the committee in developing the Code portion are discussed within the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.
Seismic Assessment and Retrofit of Reinforced Concrete Columns
Author: Konstantinos G. Megalooikonomou
Publisher: Cambridge Scholars Publishing
ISBN: 9781527527850
Category : Columns, Concrete
Languages : en
Pages : 387
Book Description
Reinforced concrete columns play a very important role in structural performance. As such, it is essential to apply a suitable analytical tool to estimate their structural behaviour considering all failure mechanisms such as axial, shear, and flexural failures. This book highlights the development of a fiber beam-column element accounting for shear effects and the effect of tension stiffening through reinforcement-to-concrete bond, along with the employment of suitable constitutive material laws.
Publisher: Cambridge Scholars Publishing
ISBN: 9781527527850
Category : Columns, Concrete
Languages : en
Pages : 387
Book Description
Reinforced concrete columns play a very important role in structural performance. As such, it is essential to apply a suitable analytical tool to estimate their structural behaviour considering all failure mechanisms such as axial, shear, and flexural failures. This book highlights the development of a fiber beam-column element accounting for shear effects and the effect of tension stiffening through reinforcement-to-concrete bond, along with the employment of suitable constitutive material laws.
Earthquake Engineering
Author: Yousef Bozorgnia
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958
Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958
Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res
... Tests on Reinforced Concrete Columns
Author: Morton Owen Withey
Publisher:
ISBN:
Category : Columns, Concrete
Languages : en
Pages : 530
Book Description
Publisher:
ISBN:
Category : Columns, Concrete
Languages : en
Pages : 530
Book Description
Reinforced Concrete Structures - Innovations in Materials, Design and Analysis
Author: Amal I. Hassan
Publisher: BoD – Books on Demand
ISBN: 1837694931
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Reinforced concrete has long been a cornerstone of modern construction, offering strength, durability, and versatility in building structures of all types. As the demand for sustainable, high-performance materials grows, so does the need for continued innovation and advancement in this field. This comprehensive collection of articles brings together the latest research and insights into the many aspects of reinforced concrete. From materials and properties to design and optimization, and even the identification of pathologies and the effects of corrosion, each section offers valuable knowledge and expertise. With contributions from leading experts in the field, this collection provides a comprehensive overview of the latest innovations and research in reinforced concrete. It is an essential resource for researchers, engineers, and practitioners seeking to stay up to date with the latest advancements in this important field.
Publisher: BoD – Books on Demand
ISBN: 1837694931
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Reinforced concrete has long been a cornerstone of modern construction, offering strength, durability, and versatility in building structures of all types. As the demand for sustainable, high-performance materials grows, so does the need for continued innovation and advancement in this field. This comprehensive collection of articles brings together the latest research and insights into the many aspects of reinforced concrete. From materials and properties to design and optimization, and even the identification of pathologies and the effects of corrosion, each section offers valuable knowledge and expertise. With contributions from leading experts in the field, this collection provides a comprehensive overview of the latest innovations and research in reinforced concrete. It is an essential resource for researchers, engineers, and practitioners seeking to stay up to date with the latest advancements in this important field.
Displacement-based Seismic Design of Structures
Author: M. J. N. Priestley
Publisher: Iuss Press
ISBN:
Category : Science
Languages : en
Pages : 750
Book Description
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.
Publisher: Iuss Press
ISBN:
Category : Science
Languages : en
Pages : 750
Book Description
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.
The Failure of Plain and Spirally Reinforced Concrete in Compression
Author: Frank Erwin Richart
Publisher:
ISBN:
Category : Columns, Concrete
Languages : en
Pages : 82
Book Description
Publisher:
ISBN:
Category : Columns, Concrete
Languages : en
Pages : 82
Book Description