Author: Karl H. Hofmann
Publisher: Springer
ISBN: 354036269X
Category : Mathematics
Languages : en
Pages : 155
Book Description
The Duality of Compact Semigroups and C*-Bigebras
Author: Karl H. Hofmann
Publisher: Springer
ISBN: 354036269X
Category : Mathematics
Languages : en
Pages : 155
Book Description
Publisher: Springer
ISBN: 354036269X
Category : Mathematics
Languages : en
Pages : 155
Book Description
The Pontryagin Duality of Compact O-Dimensional Semilattices and Its Applications
Author: K.H. Hofmann
Publisher: Springer
ISBN: 3540377417
Category : Mathematics
Languages : en
Pages : 139
Book Description
Publisher: Springer
ISBN: 3540377417
Category : Mathematics
Languages : en
Pages : 139
Book Description
Categorical Topology
Author: E. Binz
Publisher: Springer
ISBN: 354038118X
Category : Mathematics
Languages : en
Pages : 735
Book Description
Publisher: Springer
ISBN: 354038118X
Category : Mathematics
Languages : en
Pages : 735
Book Description
Duality Principles in Nonconvex Systems
Author: David Yang Gao
Publisher: Springer Science & Business Media
ISBN: 1475731760
Category : Mathematics
Languages : en
Pages : 463
Book Description
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.
Publisher: Springer Science & Business Media
ISBN: 1475731760
Category : Mathematics
Languages : en
Pages : 463
Book Description
Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.
The Structure of Compact Groups
Author: Karl H. Hofmann
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111172600
Category : Mathematics
Languages : en
Pages : 1076
Book Description
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111172600
Category : Mathematics
Languages : en
Pages : 1076
Book Description
Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles
Author: J. M.G. Fell
Publisher: Academic Press
ISBN: 0080874444
Category : Mathematics
Languages : en
Pages : 771
Book Description
This is an all-encompassing and exhaustive exposition of the theory of infinite-dimensional Unitary Representations of Locally Compact Groups and its generalization to representations of Banach algebras. The presentation is detailed, accessible, and self-contained (except for some elementary knowledge in algebra, topology, and abstract measure theory). In the later chapters the reader is brought to the frontiers of present-day knowledge in the area of Mackey normal subgroup analysisand its generalization to the context of Banach *-Algebraic Bundles.
Publisher: Academic Press
ISBN: 0080874444
Category : Mathematics
Languages : en
Pages : 771
Book Description
This is an all-encompassing and exhaustive exposition of the theory of infinite-dimensional Unitary Representations of Locally Compact Groups and its generalization to representations of Banach algebras. The presentation is detailed, accessible, and self-contained (except for some elementary knowledge in algebra, topology, and abstract measure theory). In the later chapters the reader is brought to the frontiers of present-day knowledge in the area of Mackey normal subgroup analysisand its generalization to the context of Banach *-Algebraic Bundles.
Representations of Commutative Semitopological Semigroups
Author: C.F. Dunkl
Publisher: Springer
ISBN: 3540374027
Category : Mathematics
Languages : en
Pages : 188
Book Description
Publisher: Springer
ISBN: 3540374027
Category : Mathematics
Languages : en
Pages : 188
Book Description
Characterizations of C* Algebras
Author: Robert Doran
Publisher: Routledge
ISBN: 135146177X
Category : Mathematics
Languages : en
Pages : 450
Book Description
The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry.
Publisher: Routledge
ISBN: 135146177X
Category : Mathematics
Languages : en
Pages : 450
Book Description
The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry.
Concepts in Hadron Physics
Author: Paul Urban
Publisher: Springer Science & Business Media
ISBN: 3709182840
Category : Science
Languages : en
Pages : 439
Book Description
Soluble quantum field theory models are a rare commodity. An infinite number of degrees of freedom and noncompact invariance groups have a nasty habit of ex ploding in the model-makers' face. Nevertheless, impor tant progress has recently been made in the class of superrenormalizable relativistic theories, such as a self-interacting boson in a two-dimensional space time [ 1]. These results have been obtained starting with the free field and adding the interaction in a carefully controlled way. Yet, the models successfully studied in this way do DQ~ have an infinite field strength renormalization, which, at least according to perturbation theory, should appear for realistic relativistic models in four-dimensional space time. ~2~!Y~~!9n_~g_~h~_~gg~1 The ultralocal scalar field theories discussed in these lecture notes are likewise motivated by relativistic theories but are based on a different approximatiGn. This approximation formally amounts to dropping the spatial gradient term from the Hamiltonian rather than the non linear interaction. For a self-interacting boson field in a space-time of (s+l) dimensions (s~l), the classical ultralocal model Hamiltonian reads (1-1) The quantum theory of this model is the subject of the present paper. This model differs formally from a rela tivistic theory by the term f![Z~Cl(~)]2 d~ which, it is hoped, can, in one or another way, be added as a pertur 229 bation in the quantum theory. However, that still remains a problem for the future, and we confine our remarks to . . a careful study of the "unperturbed" model (1-1).
Publisher: Springer Science & Business Media
ISBN: 3709182840
Category : Science
Languages : en
Pages : 439
Book Description
Soluble quantum field theory models are a rare commodity. An infinite number of degrees of freedom and noncompact invariance groups have a nasty habit of ex ploding in the model-makers' face. Nevertheless, impor tant progress has recently been made in the class of superrenormalizable relativistic theories, such as a self-interacting boson in a two-dimensional space time [ 1]. These results have been obtained starting with the free field and adding the interaction in a carefully controlled way. Yet, the models successfully studied in this way do DQ~ have an infinite field strength renormalization, which, at least according to perturbation theory, should appear for realistic relativistic models in four-dimensional space time. ~2~!Y~~!9n_~g_~h~_~gg~1 The ultralocal scalar field theories discussed in these lecture notes are likewise motivated by relativistic theories but are based on a different approximatiGn. This approximation formally amounts to dropping the spatial gradient term from the Hamiltonian rather than the non linear interaction. For a self-interacting boson field in a space-time of (s+l) dimensions (s~l), the classical ultralocal model Hamiltonian reads (1-1) The quantum theory of this model is the subject of the present paper. This model differs formally from a rela tivistic theory by the term f![Z~Cl(~)]2 d~ which, it is hoped, can, in one or another way, be added as a pertur 229 bation in the quantum theory. However, that still remains a problem for the future, and we confine our remarks to . . a careful study of the "unperturbed" model (1-1).
Proceedings of the Second Conference on Compact Tranformation Groups. University of Massachusetts, Amherst, 1971
Author: H. T Ku
Publisher: Springer
ISBN: 3540380663
Category : Mathematics
Languages : en
Pages : 342
Book Description
Publisher: Springer
ISBN: 3540380663
Category : Mathematics
Languages : en
Pages : 342
Book Description