The Design of High-Efficiency Turbomachinery and Gas Turbines, second edition, with a new preface

The Design of High-Efficiency Turbomachinery and Gas Turbines, second edition, with a new preface PDF Author: David Gordon Wilson
Publisher: MIT Press
ISBN: 0262526689
Category : Technology & Engineering
Languages : en
Pages : 625

Get Book Here

Book Description
The second edition of a comprehensive textbook that introduces turbomachinery and gas turbines through design methods and examples. This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals.

The Design of High-Efficiency Turbomachinery and Gas Turbines, second edition, with a new preface

The Design of High-Efficiency Turbomachinery and Gas Turbines, second edition, with a new preface PDF Author: David Gordon Wilson
Publisher: MIT Press
ISBN: 0262526689
Category : Technology & Engineering
Languages : en
Pages : 625

Get Book Here

Book Description
The second edition of a comprehensive textbook that introduces turbomachinery and gas turbines through design methods and examples. This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals.

The Design of High-Efficiency Turbomachinery and Gas Turbines, second edition, with a new preface

The Design of High-Efficiency Turbomachinery and Gas Turbines, second edition, with a new preface PDF Author: David Gordon Wilson
Publisher: MIT Press
ISBN: 0262325810
Category : Technology & Engineering
Languages : en
Pages : 625

Get Book Here

Book Description
The second edition of a comprehensive textbook that introduces turbomachinery and gas turbines through design methods and examples. This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals.

The Design of High-efficiency Turbomachinery and Gas Turbines

The Design of High-efficiency Turbomachinery and Gas Turbines PDF Author: David Gordon Wilson
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 632

Get Book Here

Book Description
One of the only texts to focus on turbomachinery and gas turbines from the 'design' point of view, this volume reviews the necessary thermodynamics, gives extensive design data, provides engine and component illustrations (with comments on good and less-than-good design features), and contains many worked examples - allowing students to produce preliminary designs that can be made and run quickly - as early as Ch. 5. More comprehensive than similar texts, it features a simplified - and more accurate thermodynamic treatment that eliminates the confusing use of 'gamma' and specific heat together, and provides individual full-chapter coverage of axial-flow turbines and compressors and radial-flow versions of the same. *Contains a Brief History of Turbomachinery. *Features a design perspective throughout - and enables students to develop a preliminary design after Ch. 5. *Offers a unified treatment of energy transfer and vector diagrams - focusing on principles that can be applied easily to compressors, pumps, turbines - radial and axial. *Includes specialized chapters that give far more design data than other similar texts - allowing students to produce a design that can be made and r

Gas Turbine Engineering Handbook

Gas Turbine Engineering Handbook PDF Author: Meherwan P. Boyce
Publisher: Elsevier
ISBN: 0080456898
Category : Mathematics
Languages : en
Pages : 956

Get Book Here

Book Description
The Gas Turbine Engineering Handbook has been the standard for engineers involved in the design, selection, and operation of gas turbines. This revision includes new case histories, the latest techniques, and new designs to comply with recently passed legislation. By keeping the book up to date with new, emerging topics, Boyce ensures that this book will remain the standard and most widely used book in this field. The new Third Edition of the Gas Turbine Engineering Hand Book updates the book to cover the new generation of Advanced gas Turbines. It examines the benefit and some of the major problems that have been encountered by these new turbines. The book keeps abreast of the environmental changes and the industries answer to these new regulations. A new chapter on case histories has been added to enable the engineer in the field to keep abreast of problems that are being encountered and the solutions that have resulted in solving them. - Comprehensive treatment of Gas Turbines from Design to Operation and Maintenance. In depth treatment of Compressors with emphasis on surge, rotating stall, and choke; Combustors with emphasis on Dry Low NOx Combustors; and Turbines with emphasis on Metallurgy and new cooling schemes. An excellent introductory book for the student and field engineers - A special maintenance section dealing with the advanced gas turbines, and special diagnostic charts have been provided that will enable the reader to troubleshoot problems he encounters in the field - The third edition consists of many Case Histories of Gas Turbine problems. This should enable the field engineer to avoid some of these same generic problems

Gas Turbine Design, Components and System Design Integration

Gas Turbine Design, Components and System Design Integration PDF Author: Meinhard T. Schobeiri
Publisher: Springer
ISBN: 3319583786
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book Here

Book Description
This book written by a world-renowned expert with more than forty years of active gas turbine R&D experience comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation.This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.

Fluid Mechanics, Thermodynamics of Turbomachinery

Fluid Mechanics, Thermodynamics of Turbomachinery PDF Author: Sydney Lawrence Dixon
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
Revised and updated, this well established and highly successful book gives a competent account of the fundamental theory of turbomachines. A concise and unified approach to the subject is employed which fills the need for a comprehensive introductory text suitable for most engineering curricula. The theoretical approach, based firmly on the fundamental principles of thermodynamics and fluid mechanics, makes the book particularly suitable for undergraduate courses. It has also proved very useful to professional engineers who require a relevant text on the basic physical processes in turbomachines and their theoretical representation. Several modifications have been incorporated in the text in the light of recent advances in the subject. Further information on cavitation has been included and a new section on the optimum design of a pump inlet taking account of cavitation limitations has been added. Certain chapters have been extended: the section on 'Constant specific mass flow' design now includes the flow equations for a following rotor row, and the section on the definition of blade shapes has been extended to include the parabolic arc camber line blade. A list of symbols used in the text has been added. Each chapter contains a selection of useful problems and answers are provided at the end of the book. SI/Metric units are used throughout

Gas Turbines for Electric Power Generation

Gas Turbines for Electric Power Generation PDF Author: S. Can Gülen
Publisher: Cambridge University Press
ISBN: 1108416659
Category : Business & Economics
Languages : en
Pages : 735

Get Book Here

Book Description
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.

Jet Propulsion

Jet Propulsion PDF Author: N. A. Cumpsty
Publisher: Cambridge University Press
ISBN: 9780521541442
Category : Technology & Engineering
Languages : en
Pages : 326

Get Book Here

Book Description
This is the second edition of Cumpsty's excellent self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engines. Through two engine design projects, first for a new large passenger aircraft, and second for a new fighter aircraft, the text introduces, illustrates and explains the important facets of modern engine design. Individual sections cover aircraft requirements and aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The book emphasises principles and ideas, with simplification and approximation used where this helps understanding. This edition has been thoroughly updated and revised, and includes a new appendix on noise control and an expanded treatment of combustion emissions. Suitable for student courses in aircraft propulsion, but also an invaluable reference for engineers in the engine and airframe industry.

Design and Performance of Gas Turbine Power Plants

Design and Performance of Gas Turbine Power Plants PDF Author: William R. Hawthorne
Publisher: Princeton University Press
ISBN: 1400875609
Category : Science
Languages : en
Pages : 582

Get Book Here

Book Description
Volume XI of the High Speed Aerodynamics and Jet Propulsion series. Edited by W.R. Hawthorne and W.T. Olson. This is a comprehensive presentation of basic problems involved in the design of aircraft gas turbines, including sections covering requirements and processes, experimental techniques, fuel injection, flame stabilization, mixing processes, fuels, combustion chamber development, materials for gas turbine applications, turbine blade vibration, and performance. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Commercial Aircraft Propulsion and Energy Systems Research

Commercial Aircraft Propulsion and Energy Systems Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309440998
Category : Technology & Engineering
Languages : en
Pages : 123

Get Book Here

Book Description
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.