The Cube-A Window to Convex and Discrete Geometry

The Cube-A Window to Convex and Discrete Geometry PDF Author: Chuanming Zong
Publisher: Cambridge University Press
ISBN: 9780521855358
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory.

The Cube-A Window to Convex and Discrete Geometry

The Cube-A Window to Convex and Discrete Geometry PDF Author: Chuanming Zong
Publisher: Cambridge University Press
ISBN: 9780521855358
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory.

Classical Topics in Discrete Geometry

Classical Topics in Discrete Geometry PDF Author: Károly Bezdek
Publisher: Springer Science & Business Media
ISBN: 1441906002
Category : Mathematics
Languages : en
Pages : 171

Get Book Here

Book Description
Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.

Convexity from the Geometric Point of View

Convexity from the Geometric Point of View PDF Author: Vitor Balestro
Publisher: Springer Nature
ISBN: 3031505077
Category :
Languages : en
Pages : 1195

Get Book Here

Book Description


Circles, Spheres and Spherical Geometry

Circles, Spheres and Spherical Geometry PDF Author: Hiroshi Maehara
Publisher: Springer Nature
ISBN: 3031627768
Category :
Languages : en
Pages : 342

Get Book Here

Book Description


Lectures on Convex Geometry

Lectures on Convex Geometry PDF Author: Daniel Hug
Publisher: Springer Nature
ISBN: 3030501809
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.

Convex Bodies: The Brunn–Minkowski Theory

Convex Bodies: The Brunn–Minkowski Theory PDF Author: Rolf Schneider
Publisher: Cambridge University Press
ISBN: 1107601010
Category : Mathematics
Languages : en
Pages : 759

Get Book Here

Book Description
A complete presentation of a central part of convex geometry, from basics for beginners, to the exposition of current research.

Convexity

Convexity PDF Author: Barry Simon
Publisher: Cambridge University Press
ISBN: 1139497596
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
Convexity is important in theoretical aspects of mathematics and also for economists and physicists. In this monograph the author provides a comprehensive insight into convex sets and functions including the infinite-dimensional case and emphasizing the analytic point of view. Chapter one introduces the reader to the basic definitions and ideas that play central roles throughout the book. The rest of the book is divided into four parts: convexity and topology on infinite-dimensional spaces; Loewner's theorem; extreme points of convex sets and related issues, including the Krein–Milman theorem and Choquet theory; and a discussion of convexity and inequalities. The connections between disparate topics are clearly explained, giving the reader a thorough understanding of how convexity is useful as an analytic tool. A final chapter overviews the subject's history and explores further some of the themes mentioned earlier. This is an excellent resource for anyone interested in this central topic.

Lecture Notes on Geometry of Numbers

Lecture Notes on Geometry of Numbers PDF Author: R. J. Hans-Gill
Publisher: Springer Nature
ISBN: 9819996023
Category :
Languages : en
Pages : 212

Get Book Here

Book Description


Jordan Structures in Geometry and Analysis

Jordan Structures in Geometry and Analysis PDF Author: Cho-Ho Chu
Publisher: Cambridge University Press
ISBN: 1139505432
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Jordan theory has developed rapidly in the last three decades, but very few books describe its diverse applications. Here, the author discusses some recent advances of Jordan theory in differential geometry, complex and functional analysis, with the aid of numerous examples and concise historical notes. These include: the connection between Jordan and Lie theory via the Tits–Kantor–Koecher construction of Lie algebras; a Jordan algebraic approach to infinite dimensional symmetric manifolds including Riemannian symmetric spaces; the one-to-one correspondence between bounded symmetric domains and JB*-triples; and applications of Jordan methods in complex function theory. The basic structures and some functional analytic properties of JB*-triples are also discussed. The book is a convenient reference for experts in complex geometry or functional analysis, as well as an introduction to these areas for beginning researchers. The recent applications of Jordan theory discussed in the book should also appeal to algebraists.

Fourier Analysis on Polytopes and the Geometry of Numbers

Fourier Analysis on Polytopes and the Geometry of Numbers PDF Author: Sinai Robins
Publisher: American Mathematical Society
ISBN: 1470470330
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This book offers a gentle introduction to the geometry of numbers from a modern Fourier-analytic point of view. One of the main themes is the transfer of geometric knowledge of a polytope to analytic knowledge of its Fourier transform. The Fourier transform preserves all of the information of a polytope, and turns its geometry into analysis. The approach is unique, and streamlines this emerging field by presenting new simple proofs of some basic results of the field. In addition, each chapter is fitted with many exercises, some of which have solutions and hints in an appendix. Thus, an individual learner will have an easier time absorbing the material on their own, or as part of a class. Overall, this book provides an introduction appropriate for an advanced undergraduate, a beginning graduate student, or researcher interested in exploring this important expanding field.