The Cryogenic Dark Matter Search Low Ionization-threshold Experiment

The Cryogenic Dark Matter Search Low Ionization-threshold Experiment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description
Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during charge transport. This technology allows us to reach very low thresholds and reliably measure and investigate low energy recoils from light Dark Matter particles. This thesis describes the physics behind CDMSlite, the experimental design and the first science results from CDMSlite operated at the Soudan Underground Laboratory.

The Cryogenic Dark Matter Search Low Ionization-threshold Experiment

The Cryogenic Dark Matter Search Low Ionization-threshold Experiment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description
Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during charge transport. This technology allows us to reach very low thresholds and reliably measure and investigate low energy recoils from light Dark Matter particles. This thesis describes the physics behind CDMSlite, the experimental design and the first science results from CDMSlite operated at the Soudan Underground Laboratory.

The Cryogenic Dark Matter Search Low Ionization-threshold Experiment

The Cryogenic Dark Matter Search Low Ionization-threshold Experiment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search

Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 437

Get Book Here

Book Description
An ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, "dark matter". Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) project operated at the Soudan Underground Laboratory from 2003-2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various gamma and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter t c2 inent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode v to decrease their energy thresholds and correspondingly increase their sensitivity to low-mass WIMPs. This is the CDMS low ionization threshold experiment (CDMSlite), which has pushed the frontier at lower WIMP masses. This dissertation describes the second run of CDMSlite at Soudan: its hardware, operations, analysis, and results. The results include new WIMP mass-cross section upper limits on the spin-independent and spin-dependent WIMP-nucleon interactions. Thanks to the lower background and threshold in this run compared to the first CDMSlite run, these limits are the most sensitive in the world below WIMP masses of ~4 GeV/c2. This demonstrates also the great promise and utility of the high-voltage operating mode in the SuperCDMS SNOLAB experiment.

A Low-Threshold Analysis of Data from the Cryogenic Dark Matter Search Experiment

A Low-Threshold Analysis of Data from the Cryogenic Dark Matter Search Experiment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 584

Get Book Here

Book Description
Although dark matter appears to constitute over 80% of the matter in the Universe, its composition is a mystery. Astrophysical observations suggest that the luminous portions of the Galaxy are embedded in a halo of darkmatter particles. Weakly Interacting Massive Particles (WIMPs) are the most studied class of dark-matter candidates and arise naturally within the context of many weak-scale supersymmetric theories. Direct-detection experiments like the Cryogenic Dark Matter Search (CDMS) strive to discern the kinetic energy of recoiling nuclei resulting from WIMP interactions with terrestrial matter. This is a considerable challenge in which the low (expected) rate of WIMP interactions must be distinguished from an overwhelming rate due to known types of radiation. An incontrovertible positive detection has remained elusive. However, a few experiments have recorded data that appear consistent with a low-mass WIMP. This thesis describes an attempt to probe the favored parameter space. To increase sensitivity to low-mass WIMPs, a low-threshold technique with improved sensitivity to small energy depositions is applied to CDMS shallowsite data. Four germanium and two silicon detectors were operated between December 2001 and June 2002, yielding 118 days of exposure. By sacrificing some of the CDMS detectors' ability to discriminate signal from background, energy thresholds of ~1 and ~2 keV were achieved for three of the germanium and both silicon detectors, respectively. A large number of WIMP candidate events are observed, most of which can be accounted for by misidentification of background sources. No conclusive evidence for a low-mass WIMP signal is found. The observed event rates are used to set upper limits on the WIMPnucleon scattering cross section as a function of WIMP mass. Interesting parameter space is excluded for WIMPs with masses below ~9GeV/c2. Under standard assumptions, the parameter space favored by interpretations of other experiments' data as low-mass WIMP signals is partially excluded, and new parameter space is excluded for WIMP masses between 3 and 4GeV/c2.

The Cryogenic Dark Matter Search

The Cryogenic Dark Matter Search PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

The Cryogenic Dark Matter Search and Background Rejection with Event Position Information

The Cryogenic Dark Matter Search and Background Rejection with Event Position Information PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 342

Get Book Here

Book Description
Evidence from observational cosmology and astrophysics indicates that about one third of the universe is matter, but that the known baryonic matter only contributes to the universe at 4%. A large fraction of the universe is cold and non-baryonic matter, which has important role in the universe structure formation and its evolution. The leading candidate for the non-baryonic dark matter is Weakly Interacting Massive Particles (WIMPs), which naturally occurs in the supersymmetry theory in particle physics. The Cryogenic Dark Matter Search (CDMS) experiment is searching for evidence of a WIMP interaction off an atomic nucleus in crystals of Ge and Si by measuring simultaneously the phonon energy and ionization energy of the interaction in the CDMS detectors. The WIMP interaction energy is from a few keV to tens of keV with a rate less than 0.1 events/kg/day. To reach the goal of WIMP detection, the CDMS experiment has been conducted in the Soudan mine with an active muon veto and multistage passive background shields. The CDMS detectors have a low energy threshold and background rejection capabilities based on ionization yield. However, betas from contamination and other radioactive sources produce surface interactions, which have low ionization yield, comparable to that of bulk nuclear interactions. The low-ionization surface electron recoils must be removed in the WIMP search data analysis. An emphasis of this thesis is on developing the method of the surface-interaction rejection using location information of the interactions, phonon energy distributions and phonon timing parameters. The result of the CDMS Soudan run118 92.3 live day WIMP search data analysis is presented, and represents the most sensitive search yet performed.

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 454

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of the Weakly Interacting Massive Particles (WIMPs). For this purpose, CDMS uses detectors based on crystals of Ge and Si, operated at the temperature of 20 mK, and providing a two-fold signature of an interaction: the ionization and the athermal phonon signals. The two signals, along with the passive and active shielding of the experimental setup, and with the underground experimental sites, allow very effective suppression and rejection of different types of backgrounds. This dissertation presents the commissioning and the results of the first WIMP-search run performed by the CDMS collaboration at the deep underground site at the Soudan mine in Minnesota. We develop different methods of suppressing the dominant background due to the electron-recoil events taking place at the detector surface and we apply these algorithms to the data set. These results place the world's most sensitive limits on the WIMP-nucleon spin-independent elastic-scattering cross-section. Finally, they examine the compatibility of the supersymmetric WIMP-models with the direct-detection experiments (such as CDMS) and discuss the implications of the new CDMS result on these models.

Development of New Cryogenic Low-threshold Detectors for the Search of Light Dark Matter and Low-energy Neutrino Physics

Development of New Cryogenic Low-threshold Detectors for the Search of Light Dark Matter and Low-energy Neutrino Physics PDF Author: Dimitri Misiak
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The Coherent Elastic Neutrino-Nucleus Scattering (CENNS) is a process predicted nearly 40 years ago. In August 2017, the COHERENT experiment reported the first keV-scale detection at the 6.7 sigma level of this process, which is a probe for the new low energy physics, opening a window on a myriad of new physics opportunities. The RICOCHET experiment aims at measuring with high accuracy the CENNS process in order to probe various exotic physics scenarios in the electroweak sector. Using cryogenic bolometers operated in a cryostat 8 meters away from the core of the ILL research nuclear reactor, the experiment will benefit from an intense neutrino flux, allowing the results of COHERENT to be reproduced in a single week. The objective of an accurate measurement will be achieved after one year of data collection, by 2024. The CRYOCUBE is a compact cubic array of cryogenic detectors with the following specifications: a very low energy threshold of O(10) eV on the thermal signal, an electromagnetic background rejection of at least 10^3 and a total target mass of 1 kg distributed among 27 germanium crystals of about 30 g each. The objective of this thesis is to propose an optimized detector design for the CRYOCUBE, inspired by the cryogenic germanium detectors equipped with charge and temperature readings of the direct dark matter search experiment EDELWEISS. This joint R&D program is based on event discrimination realized in germanium semiconductor crystals. The recoil energy of an incident particle is derived either from the increase of the crystal temperature measured by a GeNTD thermistor (heat channel) or from the excited electric charges collected by electrodes on its surface (ionization channel). This double energy measurement makes it possible to distinguish the nuclear recoils produced by the CENNS or the dark matter from the electronic radioactive background. As these recoils are of the order of O(100) eV, this thesis work is focused on the development of a new generation of cryogenic low threshold germanium detectors with particle identification. It explores how to improve the resolution in heat and ionization energy up to O(10) eV while maintaining a good rejection of background events. This study is based on the testing of prototype detectors in the IP2I cryostat, which are compared to theoretical predictions from electro-thermal and electrostatic modeling of the detectors. This manuscript begins with the definition of the CENNS process, its scientific importance and the objectives of the RICOCHET experiment. It then presents the cryogenic installation allowing the surface operation of the detectors at 20 mK in optimal conditions. An electro-thermal model of the bolometers, compared with experimental data, is developed and applied to the simulation of the noise associated with the electronics of the heat signal. The thesis then formalizes the generation of the ionization signals arising from excited charge carriers drifting in the germanium crystal under the influence of the applied electric field. The expected resolution from a future low-noise electronics is modeled based on two detector designs. They are optimized by their electrostatic simulation in a finite element calculation software. A comparison of the theoretical and experimental performance of ionization is performed on the basis of the RED80 and REDN1 prototype detectors. This work ends with the characterization of the radioactive background in the cryogenic laboratory with the analysis of the data from RED80, and in particular its neutron component, used to estimate the expected background at the ILL site for RICOCHET.

A Low-threshold Analysis of Data from the Cryogenic Dark Matter Search Experiment

A Low-threshold Analysis of Data from the Cryogenic Dark Matter Search Experiment PDF Author: Raymond Adelbert Bunker
Publisher:
ISBN: 9781267193988
Category :
Languages : en
Pages : 702

Get Book Here

Book Description
Under standard assumptions, the parameter space favored by interpretations of other experiments' data as low-mass WIMP signals is partially excluded, and new parameter space is excluded for WIMP masses between 3 and 4 GeV/c2.

The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection PDF Author: Catherine N. Bailey
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the Ơ̐1rst data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c^2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modiƠ̐1cation of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis eƠ̐0ort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.