The Cryogenic Dark Matter Search and Background Rejection with Event Position Information

The Cryogenic Dark Matter Search and Background Rejection with Event Position Information PDF Author: Gensheng Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 345

Get Book Here

Book Description

The Cryogenic Dark Matter Search and Background Rejection with Event Position Information

The Cryogenic Dark Matter Search and Background Rejection with Event Position Information PDF Author: Gensheng Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 345

Get Book Here

Book Description


The Cryogenic Dark Matter Search and Background Rejection with Event Position Information

The Cryogenic Dark Matter Search and Background Rejection with Event Position Information PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 342

Get Book Here

Book Description
Evidence from observational cosmology and astrophysics indicates that about one third of the universe is matter, but that the known baryonic matter only contributes to the universe at 4%. A large fraction of the universe is cold and non-baryonic matter, which has important role in the universe structure formation and its evolution. The leading candidate for the non-baryonic dark matter is Weakly Interacting Massive Particles (WIMPs), which naturally occurs in the supersymmetry theory in particle physics. The Cryogenic Dark Matter Search (CDMS) experiment is searching for evidence of a WIMP interaction off an atomic nucleus in crystals of Ge and Si by measuring simultaneously the phonon energy and ionization energy of the interaction in the CDMS detectors. The WIMP interaction energy is from a few keV to tens of keV with a rate less than 0.1 events/kg/day. To reach the goal of WIMP detection, the CDMS experiment has been conducted in the Soudan mine with an active muon veto and multistage passive background shields. The CDMS detectors have a low energy threshold and background rejection capabilities based on ionization yield. However, betas from contamination and other radioactive sources produce surface interactions, which have low ionization yield, comparable to that of bulk nuclear interactions. The low-ionization surface electron recoils must be removed in the WIMP search data analysis. An emphasis of this thesis is on developing the method of the surface-interaction rejection using location information of the interactions, phonon energy distributions and phonon timing parameters. The result of the CDMS Soudan run118 92.3 live day WIMP search data analysis is presented, and represents the most sensitive search yet performed.

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site PDF Author: Vuk Mandic
Publisher:
ISBN:
Category :
Languages : en
Pages : 922

Get Book Here

Book Description


First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 454

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of the Weakly Interacting Massive Particles (WIMPs). For this purpose, CDMS uses detectors based on crystals of Ge and Si, operated at the temperature of 20 mK, and providing a two-fold signature of an interaction: the ionization and the athermal phonon signals. The two signals, along with the passive and active shielding of the experimental setup, and with the underground experimental sites, allow very effective suppression and rejection of different types of backgrounds. This dissertation presents the commissioning and the results of the first WIMP-search run performed by the CDMS collaboration at the deep underground site at the Soudan mine in Minnesota. We develop different methods of suppressing the dominant background due to the electron-recoil events taking place at the detector surface and we apply these algorithms to the data set. These results place the world's most sensitive limits on the WIMP-nucleon spin-independent elastic-scattering cross-section. Finally, they examine the compatibility of the supersymmetric WIMP-models with the direct-detection experiments (such as CDMS) and discuss the implications of the new CDMS result on these models.

The Cryogenic Dark Matter Search (CDMS)

The Cryogenic Dark Matter Search (CDMS) PDF Author: Peter David Barnes
Publisher:
ISBN:
Category :
Languages : en
Pages : 464

Get Book Here

Book Description


Results from the Two-tower Run of the Cryogenic Dark Matter Search

Results from the Two-tower Run of the Cryogenic Dark Matter Search PDF Author: Angela Jean Reisetter
Publisher:
ISBN:
Category :
Languages : en
Pages : 250

Get Book Here

Book Description


Development of New Cryogenic Low-threshold Detectors for the Search of Light Dark Matter and Low-energy Neutrino Physics

Development of New Cryogenic Low-threshold Detectors for the Search of Light Dark Matter and Low-energy Neutrino Physics PDF Author: Dimitri Misiak
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The Coherent Elastic Neutrino-Nucleus Scattering (CENNS) is a process predicted nearly 40 years ago. In August 2017, the COHERENT experiment reported the first keV-scale detection at the 6.7 sigma level of this process, which is a probe for the new low energy physics, opening a window on a myriad of new physics opportunities. The RICOCHET experiment aims at measuring with high accuracy the CENNS process in order to probe various exotic physics scenarios in the electroweak sector. Using cryogenic bolometers operated in a cryostat 8 meters away from the core of the ILL research nuclear reactor, the experiment will benefit from an intense neutrino flux, allowing the results of COHERENT to be reproduced in a single week. The objective of an accurate measurement will be achieved after one year of data collection, by 2024. The CRYOCUBE is a compact cubic array of cryogenic detectors with the following specifications: a very low energy threshold of O(10) eV on the thermal signal, an electromagnetic background rejection of at least 10^3 and a total target mass of 1 kg distributed among 27 germanium crystals of about 30 g each. The objective of this thesis is to propose an optimized detector design for the CRYOCUBE, inspired by the cryogenic germanium detectors equipped with charge and temperature readings of the direct dark matter search experiment EDELWEISS. This joint R&D program is based on event discrimination realized in germanium semiconductor crystals. The recoil energy of an incident particle is derived either from the increase of the crystal temperature measured by a GeNTD thermistor (heat channel) or from the excited electric charges collected by electrodes on its surface (ionization channel). This double energy measurement makes it possible to distinguish the nuclear recoils produced by the CENNS or the dark matter from the electronic radioactive background. As these recoils are of the order of O(100) eV, this thesis work is focused on the development of a new generation of cryogenic low threshold germanium detectors with particle identification. It explores how to improve the resolution in heat and ionization energy up to O(10) eV while maintaining a good rejection of background events. This study is based on the testing of prototype detectors in the IP2I cryostat, which are compared to theoretical predictions from electro-thermal and electrostatic modeling of the detectors. This manuscript begins with the definition of the CENNS process, its scientific importance and the objectives of the RICOCHET experiment. It then presents the cryogenic installation allowing the surface operation of the detectors at 20 mK in optimal conditions. An electro-thermal model of the bolometers, compared with experimental data, is developed and applied to the simulation of the noise associated with the electronics of the heat signal. The thesis then formalizes the generation of the ionization signals arising from excited charge carriers drifting in the germanium crystal under the influence of the applied electric field. The expected resolution from a future low-noise electronics is modeled based on two detector designs. They are optimized by their electrostatic simulation in a finite element calculation software. A comparison of the theoretical and experimental performance of ionization is performed on the basis of the RED80 and REDN1 prototype detectors. This work ends with the characterization of the radioactive background in the cryogenic laboratory with the analysis of the data from RED80, and in particular its neutron component, used to estimate the expected background at the ILL site for RICOCHET.

A Time Domain Phonon Pulse Fitting Analysis for the Cryogenic Dark Matter Search Experiment

A Time Domain Phonon Pulse Fitting Analysis for the Cryogenic Dark Matter Search Experiment PDF Author: Chandler Schlupf
Publisher:
ISBN:
Category :
Languages : en
Pages : 66

Get Book Here

Book Description
Dark matter makes up 85% of the known matter in the Universe, but the exact nature of dark matter remains unknown. The Cryogenic Dark Matter Search experiment, CDMS, attempts to directly detect the leading candidate dark matter particle, the Weakly Interacting Massive Particle (WIMP), recoiling off of cold germanium crystals. When particles interact with the crystals' atoms, they produce two measurable signals: phonons and ionization. The phonon signal contains information about the event such as its type, energy, and position, and has a much better resolution for lower energy events than does the ionization, especially for nuclear recoils from WIMPs. Because of this, there is a strong motivation for extracting as much information as possible from the phonon signal. For my thesis, the raw phonon pulse signal in the time domain was fit to a functional form based on phonon physics within the crystal. The functional form was carefully checked using the Markov chain Monte Carlo method. A Boosted Decision Tree (BDT) was then used to analyze the parameters from the fits to determine how well the parameters could distinguish between event types such as nuclear versus electron recoil events, and surface versus bulk events. Cuts made on the data, from results of the BDTs that were analyzed with parameters from this time-domain fitting algorithm, yielded better descrimination power than ones that were analyzed with the parameters currently used by CDMS. Applying this method to data mimicking a 15 GeV WIMP distribution produced a 34.4% signal efficiency improvement over the values currently used by CDMS.

The Cryogenic Dark Matter Search

The Cryogenic Dark Matter Search PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

Background Reduction in Cryogenic Detectors

Background Reduction in Cryogenic Detectors PDF Author: Daniel A. Bauer
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.