Author: Dumitru Baleanu
Publisher: World Scientific
ISBN: 9814355208
Category : Mathematics
Languages : en
Pages : 426
Book Description
This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.
Fractional Calculus
Author: Dumitru Baleanu
Publisher: World Scientific
ISBN: 9814355208
Category : Mathematics
Languages : en
Pages : 426
Book Description
This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.
Publisher: World Scientific
ISBN: 9814355208
Category : Mathematics
Languages : en
Pages : 426
Book Description
This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.
Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
Author: Willem Hundsdorfer
Publisher: Springer Science & Business Media
ISBN: 3662090171
Category : Technology & Engineering
Languages : en
Pages : 479
Book Description
Unique book on Reaction-Advection-Diffusion problems
Publisher: Springer Science & Business Media
ISBN: 3662090171
Category : Technology & Engineering
Languages : en
Pages : 479
Book Description
Unique book on Reaction-Advection-Diffusion problems
The Mathematics of Diffusion
Author: John Crank
Publisher: Oxford University Press
ISBN: 9780198534112
Category : Mathematics
Languages : en
Pages : 428
Book Description
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Publisher: Oxford University Press
ISBN: 9780198534112
Category : Mathematics
Languages : en
Pages : 428
Book Description
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Recent Progress on Reaction-diffusion Systems and Viscosity Solutions
Author: Yihong Du
Publisher: World Scientific
ISBN: 9812834745
Category : Mathematics
Languages : en
Pages : 373
Book Description
This book consists of survey and research articles expanding on the theme of the OC International Conference on Reaction-Diffusion Systems and Viscosity SolutionsOCO, held at Providence University, Taiwan, during January 3OCo6, 2007. It is a carefully selected collection of articles representing the recent progress of some important areas of nonlinear partial differential equations. The book is aimed for researchers and postgraduate students who want to learn about or follow some of the current research topics in nonlinear partial differential equations. The contributors consist of international experts and some participants of the conference, including Nils Ackermann (Mexico), Chao-Nien Chen (Taiwan), Yihong Du (Australia), Alberto Farina (France), Hitoshi Ishii (Japan), N Ishimura (Japan), Shigeaki Koike (Japan), Chu-Pin Lo (Taiwan), Peter Polacik (USA), Kunimochi Sakamoto (Japan), Richard Tsai (USA), Mingxin Wang (China), Yoshio Yamada (Japan), Eiji Yanagida (Japan), and Xiao-Qiang Zhao (Canada).
Publisher: World Scientific
ISBN: 9812834745
Category : Mathematics
Languages : en
Pages : 373
Book Description
This book consists of survey and research articles expanding on the theme of the OC International Conference on Reaction-Diffusion Systems and Viscosity SolutionsOCO, held at Providence University, Taiwan, during January 3OCo6, 2007. It is a carefully selected collection of articles representing the recent progress of some important areas of nonlinear partial differential equations. The book is aimed for researchers and postgraduate students who want to learn about or follow some of the current research topics in nonlinear partial differential equations. The contributors consist of international experts and some participants of the conference, including Nils Ackermann (Mexico), Chao-Nien Chen (Taiwan), Yihong Du (Australia), Alberto Farina (France), Hitoshi Ishii (Japan), N Ishimura (Japan), Shigeaki Koike (Japan), Chu-Pin Lo (Taiwan), Peter Polacik (USA), Kunimochi Sakamoto (Japan), Richard Tsai (USA), Mingxin Wang (China), Yoshio Yamada (Japan), Eiji Yanagida (Japan), and Xiao-Qiang Zhao (Canada).
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 956
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 956
Book Description
Approximation of Nonlinear Evolution Systems
Author: Jerome
Publisher: Academic Press
ISBN: 008095670X
Category : Computers
Languages : en
Pages : 301
Book Description
Approximation of Nonlinear Evolution Systems
Publisher: Academic Press
ISBN: 008095670X
Category : Computers
Languages : en
Pages : 301
Book Description
Approximation of Nonlinear Evolution Systems
The Fractional Laplacian
Author: C. Pozrikidis
Publisher: CRC Press
ISBN: 1315359936
Category : Mathematics
Languages : en
Pages : 396
Book Description
The fractional Laplacian, also called the Riesz fractional derivative, describes an unusual diffusion process associated with random excursions. The Fractional Laplacian explores applications of the fractional Laplacian in science, engineering, and other areas where long-range interactions and conceptual or physical particle jumps resulting in an irregular diffusive or conductive flux are encountered. Presents the material at a level suitable for a broad audience of scientists and engineers with rudimentary background in ordinary differential equations and integral calculus Clarifies the concept of the fractional Laplacian for functions in one, two, three, or an arbitrary number of dimensions defined over the entire space, satisfying periodicity conditions, or restricted to a finite domain Covers physical and mathematical concepts as well as detailed mathematical derivations Develops a numerical framework for solving differential equations involving the fractional Laplacian and presents specific algorithms accompanied by numerical results in one, two, and three dimensions Discusses viscous flow and physical examples from scientific and engineering disciplines Written by a prolific author well known for his contributions in fluid mechanics, biomechanics, applied mathematics, scientific computing, and computer science, the book emphasizes fundamental ideas and practical numerical computation. It includes original material and novel numerical methods.
Publisher: CRC Press
ISBN: 1315359936
Category : Mathematics
Languages : en
Pages : 396
Book Description
The fractional Laplacian, also called the Riesz fractional derivative, describes an unusual diffusion process associated with random excursions. The Fractional Laplacian explores applications of the fractional Laplacian in science, engineering, and other areas where long-range interactions and conceptual or physical particle jumps resulting in an irregular diffusive or conductive flux are encountered. Presents the material at a level suitable for a broad audience of scientists and engineers with rudimentary background in ordinary differential equations and integral calculus Clarifies the concept of the fractional Laplacian for functions in one, two, three, or an arbitrary number of dimensions defined over the entire space, satisfying periodicity conditions, or restricted to a finite domain Covers physical and mathematical concepts as well as detailed mathematical derivations Develops a numerical framework for solving differential equations involving the fractional Laplacian and presents specific algorithms accompanied by numerical results in one, two, and three dimensions Discusses viscous flow and physical examples from scientific and engineering disciplines Written by a prolific author well known for his contributions in fluid mechanics, biomechanics, applied mathematics, scientific computing, and computer science, the book emphasizes fundamental ideas and practical numerical computation. It includes original material and novel numerical methods.
Abstract Parabolic Evolution Equations and their Applications
Author: Atsushi Yagi
Publisher: Springer Science & Business Media
ISBN: 3642046312
Category : Mathematics
Languages : en
Pages : 594
Book Description
This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Publisher: Springer Science & Business Media
ISBN: 3642046312
Category : Mathematics
Languages : en
Pages : 594
Book Description
This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Numerical Methods for Conservation Laws
Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221
Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221
Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems
Author: Jens Lang
Publisher: Springer Science & Business Media
ISBN: 3662044846
Category : Computers
Languages : en
Pages : 161
Book Description
Nowadays there is an increasing emphasis on all aspects of adaptively gener ating a grid that evolves with the solution of a PDE. Another challenge is to develop efficient higher-order one-step integration methods which can handle very stiff equations and which allow us to accommodate a spatial grid in each time step without any specific difficulties. In this monograph a combination of both error-controlled grid refinement and one-step methods of Rosenbrock-type is presented. It is my intention to impart the beauty and complexity found in the theoretical investigation of the adaptive algorithm proposed here, in its realization and in solving non-trivial complex problems. I hope that this method will find many more interesting applications. Berlin-Dahlem, May 2000 Jens Lang Acknowledgements I have looked forward to writing this section since it is a pleasure for me to thank all friends who made this work possible and provided valuable input. I would like to express my gratitude to Peter Deuflhard for giving me the oppor tunity to work in the field of Scientific Computing. I have benefited immensly from his help to get the right perspectives, and from his continuous encourage ment and support over several years. He certainly will forgive me the use of Rosenbrock methods rather than extrapolation methods to integrate in time.
Publisher: Springer Science & Business Media
ISBN: 3662044846
Category : Computers
Languages : en
Pages : 161
Book Description
Nowadays there is an increasing emphasis on all aspects of adaptively gener ating a grid that evolves with the solution of a PDE. Another challenge is to develop efficient higher-order one-step integration methods which can handle very stiff equations and which allow us to accommodate a spatial grid in each time step without any specific difficulties. In this monograph a combination of both error-controlled grid refinement and one-step methods of Rosenbrock-type is presented. It is my intention to impart the beauty and complexity found in the theoretical investigation of the adaptive algorithm proposed here, in its realization and in solving non-trivial complex problems. I hope that this method will find many more interesting applications. Berlin-Dahlem, May 2000 Jens Lang Acknowledgements I have looked forward to writing this section since it is a pleasure for me to thank all friends who made this work possible and provided valuable input. I would like to express my gratitude to Peter Deuflhard for giving me the oppor tunity to work in the field of Scientific Computing. I have benefited immensly from his help to get the right perspectives, and from his continuous encourage ment and support over several years. He certainly will forgive me the use of Rosenbrock methods rather than extrapolation methods to integrate in time.