Author: Richard V. Kadison
Publisher: American Mathematical Soc.
ISBN: 0821814419
Category : Mathematics
Languages : en
Pages : 654
Book Description
Operator Algebras and Applications, Part 1
Characterizations of C* Algebras
Author: Robert Doran
Publisher: Routledge
ISBN: 135146177X
Category : Mathematics
Languages : en
Pages : 450
Book Description
The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry.
Publisher: Routledge
ISBN: 135146177X
Category : Mathematics
Languages : en
Pages : 450
Book Description
The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry.
Crossed Products of $C^*$-Algebras
Author: Dana P. Williams
Publisher: American Mathematical Soc.
ISBN: 0821842420
Category : Mathematics
Languages : en
Pages : 546
Book Description
The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of induced representations and Morita equivalence of $C*$-algebras are based. There is also a detailed treatment of the generalized Effros-Hahn conjecture and its proof due to Gootman, Rosenberg, and Sauvageot. This book is meant to be self-contained and accessible to any graduate student coming out of a first course on operator algebras. There are appendices that deal with ancillary subjects, which while not central to the subject, are nevertheless crucial for a complete understanding of the material. Some of the appendices will be of independent interest. to view another book by this author, please visit Morita Equivalence and Continuous-Trace $C*$-Algebras.
Publisher: American Mathematical Soc.
ISBN: 0821842420
Category : Mathematics
Languages : en
Pages : 546
Book Description
The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of induced representations and Morita equivalence of $C*$-algebras are based. There is also a detailed treatment of the generalized Effros-Hahn conjecture and its proof due to Gootman, Rosenberg, and Sauvageot. This book is meant to be self-contained and accessible to any graduate student coming out of a first course on operator algebras. There are appendices that deal with ancillary subjects, which while not central to the subject, are nevertheless crucial for a complete understanding of the material. Some of the appendices will be of independent interest. to view another book by this author, please visit Morita Equivalence and Continuous-Trace $C*$-Algebras.
C*-algebras and Elliptic Theory
Author: Bogdan Bojarski
Publisher: Springer Science & Business Media
ISBN: 3764376872
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book consists of reviewed original research papers and expository articles in index theory (especially on singular manifolds), topology of manifolds, operator and equivariant K-theory, Hopf cyclic cohomology, geometry of foliations, residue theory, Fredholm pairs and others, and applications in mathematical physics. The wide spectrum of subjects reflects the diverse directions of research for which the starting point was the Atiyah-Singer index theorem.
Publisher: Springer Science & Business Media
ISBN: 3764376872
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book consists of reviewed original research papers and expository articles in index theory (especially on singular manifolds), topology of manifolds, operator and equivariant K-theory, Hopf cyclic cohomology, geometry of foliations, residue theory, Fredholm pairs and others, and applications in mathematical physics. The wide spectrum of subjects reflects the diverse directions of research for which the starting point was the Atiyah-Singer index theorem.
Classification and Structure Theory of Lie Algebras of Smooth Sections
Author: Hasan Gündoğan
Publisher: Logos Verlag Berlin GmbH
ISBN: 383253024X
Category : Mathematics
Languages : en
Pages : 172
Book Description
Lie groups and their "derived objects", Lie algebras, appear in various fields of mathematics and physics. At least since the beginning of the 20th century, and after the famous works of Wilhelm Killing, Elie Cartan, Eugenio Elia Levi, Anatoly Malcev and Igor Ado on the structure of finite-dimensional Lie algebras, the classification and structure theory of infinite-dimensional Lie algebras has become an interesting and fairly vast field of interest. This dissertation focusses on the structure of Lie algebras of smooth and k-times differentiable sections of finite-dimensional Lie algebra bundles, which are generalizations of the famous and well-understood affine Kac-Moody algebras. Besides answering the immediate structural questions (center, commutator algebra, derivations, centroid, automorphism group), this work approaches a classification of section algebras by homotopy theory. Furthermore, we determine a universal invariant symmetric bilinear form on Lie algebras of smooth sections and use this form to define a natural central extension which is universal, at least in the case of Lie algebra bundles with compact base manifold.
Publisher: Logos Verlag Berlin GmbH
ISBN: 383253024X
Category : Mathematics
Languages : en
Pages : 172
Book Description
Lie groups and their "derived objects", Lie algebras, appear in various fields of mathematics and physics. At least since the beginning of the 20th century, and after the famous works of Wilhelm Killing, Elie Cartan, Eugenio Elia Levi, Anatoly Malcev and Igor Ado on the structure of finite-dimensional Lie algebras, the classification and structure theory of infinite-dimensional Lie algebras has become an interesting and fairly vast field of interest. This dissertation focusses on the structure of Lie algebras of smooth and k-times differentiable sections of finite-dimensional Lie algebra bundles, which are generalizations of the famous and well-understood affine Kac-Moody algebras. Besides answering the immediate structural questions (center, commutator algebra, derivations, centroid, automorphism group), this work approaches a classification of section algebras by homotopy theory. Furthermore, we determine a universal invariant symmetric bilinear form on Lie algebras of smooth sections and use this form to define a natural central extension which is universal, at least in the case of Lie algebra bundles with compact base manifold.
Basic Bundle Theory and K-Cohomology Invariants
Author: Dale Husemöller
Publisher: Springer Science & Business Media
ISBN: 3540749551
Category : Mathematics
Languages : en
Pages : 344
Book Description
Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.
Publisher: Springer Science & Business Media
ISBN: 3540749551
Category : Mathematics
Languages : en
Pages : 344
Book Description
Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.
$C^*$-Algebras: 1943-1993
Author:
Publisher: American Mathematical Soc.
ISBN: 0821851756
Category : C*-algebras
Languages : en
Pages : 434
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821851756
Category : C*-algebras
Languages : en
Pages : 434
Book Description
Lectures on Von Neumann Algebras
Author: Serban Stratila
Publisher: Routledge
ISBN:
Category : Mathematics
Languages : en
Pages : 486
Book Description
Publisher: Routledge
ISBN:
Category : Mathematics
Languages : en
Pages : 486
Book Description
Morita Equivalence and Continuous-Trace $C^*$-Algebras
Author: Iain Raeburn
Publisher: American Mathematical Soc.
ISBN: 0821808605
Category : Mathematics
Languages : en
Pages : 345
Book Description
A modern treatment of this complex mathematical topic for students beginning research in operator algebras as well as mathematical physicists. Topics include the algebra of compact operators, sheaves, cohomology, the Brauer group and group actions, and the imprimivity theorem. The authors assume a knowledge of C*-algebras, the Gelfand-Naimark Theorem, continuous functional calculus, positivity, and the GNS- construction. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 0821808605
Category : Mathematics
Languages : en
Pages : 345
Book Description
A modern treatment of this complex mathematical topic for students beginning research in operator algebras as well as mathematical physicists. Topics include the algebra of compact operators, sheaves, cohomology, the Brauer group and group actions, and the imprimivity theorem. The authors assume a knowledge of C*-algebras, the Gelfand-Naimark Theorem, continuous functional calculus, positivity, and the GNS- construction. Annotation copyrighted by Book News, Inc., Portland, OR
String-Math 2016
Author: Amir-Kian Kashani-Poor
Publisher: American Mathematical Soc.
ISBN: 1470435152
Category : Mathematics
Languages : en
Pages : 314
Book Description
This volume contains the proceedings of the conference String-Math 2016, which was held from June 27–July 2, 2016, at Collége de France, Paris, France. String-Math is an annual conference covering the most significant progress at the interface of string theory and mathematics. The two fields have had a very fruitful dialogue over the last thirty years, with string theory contributing key ideas which have opened entirely new areas of mathematics and modern mathematics providing powerful concepts and tools to deal with the intricacies of string and quantum field theory. The papers in this volume cover topics ranging from supersymmetric quantum field theories, topological strings, and conformal nets to moduli spaces of curves, representations, instantons, and harmonic maps, with applications to spectral theory and to the geometric Langlands program.
Publisher: American Mathematical Soc.
ISBN: 1470435152
Category : Mathematics
Languages : en
Pages : 314
Book Description
This volume contains the proceedings of the conference String-Math 2016, which was held from June 27–July 2, 2016, at Collége de France, Paris, France. String-Math is an annual conference covering the most significant progress at the interface of string theory and mathematics. The two fields have had a very fruitful dialogue over the last thirty years, with string theory contributing key ideas which have opened entirely new areas of mathematics and modern mathematics providing powerful concepts and tools to deal with the intricacies of string and quantum field theory. The papers in this volume cover topics ranging from supersymmetric quantum field theories, topological strings, and conformal nets to moduli spaces of curves, representations, instantons, and harmonic maps, with applications to spectral theory and to the geometric Langlands program.