The Catalytic Conversion of Methane by Partial Oxidation

The Catalytic Conversion of Methane by Partial Oxidation PDF Author: Woodhouse Jeremy Robert
Publisher:
ISBN:
Category : Catalysis
Languages : en
Pages : 532

Get Book Here

Book Description

The Catalytic Conversion of Methane by Partial Oxidation

The Catalytic Conversion of Methane by Partial Oxidation PDF Author: Woodhouse Jeremy Robert
Publisher:
ISBN:
Category : Catalysis
Languages : en
Pages : 532

Get Book Here

Book Description


Natural Gas Conversion VI

Natural Gas Conversion VI PDF Author: T.H. Fleisch
Publisher: Elsevier
ISBN: 0080537316
Category : Technology & Engineering
Languages : en
Pages : 577

Get Book Here

Book Description
This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Sumposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings.The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volum. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings.

Natural Gas Conversion V

Natural Gas Conversion V PDF Author: A. Parmaliana
Publisher: Elsevier
ISBN: 0080537308
Category : Technology & Engineering
Languages : en
Pages : 1005

Get Book Here

Book Description
On January 1988, the ascertained and economically accessible reserves of Natural Gas (NG) amounted to over 144,000 billion cubic meters worldwide, corresponding to 124 billion tons of oil equivalents (comparable with the liquid oil reserves, which are estimated to be 138 billion TOE). It is hypothesized that the volume of NG reserve will continue to grow at the same rate of the last decade. Forecasts on production indicate a potential increase from about 2,000 billion cubic meters in 1990 to not more than 3,300 billion cubic meters in 2010, even in a high economic development scenario. NG consumption represents only one half of oil: 1.9 billion TOE/y as compared to 3.5 of oil. Consequently, in the future gas will exceed oil as a carbon atom source. In the future the potential for getting energetic vectors or petrochemicals from NG will continue to grow.The topics covered in Natural Gas Conversion V reflect the large global R&D effort to look for new and economic ways of NG exploitation. These range from the direct conversion of methane and light paraffins to the indirect conversion through synthesis gas to fuels and chemicals. Particularly underlined and visible are the technologies already commercially viable.These proceedings prove that mature and technologically feasible processes for natural gas conversion are already available and that new and improved catalytic approaches are currently developing, the validity and feasibility of which will soon be documented. This is an exciting area of modern catalysis, which will certainly open novel and rewarding perspectives for the chemical, energy and petrochemical industries.

Catalytic Conversion of Methane to Partially Oxidized Products Over Copper-exchanged Zeolites

Catalytic Conversion of Methane to Partially Oxidized Products Over Copper-exchanged Zeolites PDF Author: Kimberly Tam Dinh
Publisher:
ISBN:
Category :
Languages : en
Pages : 169

Get Book Here

Book Description
The selective conversion of methane to liquid oxygenated compounds is a grand challenge in catalysis. Although natural gas can be processed industrially in large-scale facilities, new catalytic processes are required that economically directly convert methane to liquid products in small-scale units to exploit highly abundant but difficult-to-access gas reserves. Our group recently reported the first instance of a continuous, gas phase catalytic process for the direct conversion of methane to methanol using copper-exchanged zeolites by feeding only methane, water, and oxygen at 473 K. While this continuous system is an attractive route for the mild conversion of methane to value-added products, fundamental understanding of the reaction pathway and active site is necessary to engineer improved catalysts and an improved process. Thus, my thesis has investigated the fundamental kinetics and active site requirements for continuous partial methane oxidation and using this knowledge to design an improved process. First, a reaction pathway and a [Cu-O-Cu]2+ motif as the active site were identified for the selective catalytic conversion of methane to methanol. Kinetic analysis on copper-exchanged SSZ-13 zeolites across a range of Cu loadings and Al spatial distributions revealed the reaction pathway is initiated by rate-limiting C-H bond scission of methane. Water is kinetically inconsequential, but required for methanol desorption. Carbon dioxide is generated from the sequential over oxidation of partially oxidized intermediates and downstream methanol oxidation. Selective partial oxidation was achieved with catalyst samples of high Al content and moderate Cu content (Cu/cage

Methane Conversion

Methane Conversion PDF Author: D.M. Bibby
Publisher: Elsevier
ISBN: 0080960707
Category : Technology & Engineering
Languages : en
Pages : 759

Get Book Here

Book Description
This proceedings volume comprises the invited plenary lectures, contributed and poster papers presented at a symposium organised to mark the successful inauguration of the world's first commercial plant for production of gasoline from natural gas, based on the Mobil methanol-to-gasoline process. The objectives of the Symposium were to present both fundamental research and engineering aspects of the development and commercialization of gas-to-gasoline processes. These include steam reforming, methanol synthesis and methanol-to-gasoline. Possible alternative processes e.g. MOGD, Fischer-Tropsch synthesis of hydrocarbons, and the direct conversion of methane to higher hydrocarbons were also considered.The papers in this volume provide a valuable and extremely wide-ranging overview of current research into the various options for natural gas conversion, giving a detailed description of the gas-to-gasoline process and plant. Together, they represent a unique combination of fundamental surface chemistry catalyst characterization, reaction chemistry and engineering scale-up and commercialization.

Catalytic Partial Oxidation of Methane at High Flowrates

Catalytic Partial Oxidation of Methane at High Flowrates PDF Author: Keith Lawrence Hohn
Publisher:
ISBN:
Category :
Languages : en
Pages : 318

Get Book Here

Book Description


Methane Conversion by Oxidative Processes

Methane Conversion by Oxidative Processes PDF Author: Wolf
Publisher: Springer Science & Business Media
ISBN: 9401574499
Category : Technology & Engineering
Languages : en
Pages : 556

Get Book Here

Book Description
A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Catalytic Reaction Synthesis for the Partial Oxidation of Methane to Formaldehyde

Catalytic Reaction Synthesis for the Partial Oxidation of Methane to Formaldehyde PDF Author: Maria-Guadalupe Cardenas-Galindo
Publisher:
ISBN:
Category :
Languages : en
Pages : 440

Get Book Here

Book Description


Methane Conversion by Oxidative Processes

Methane Conversion by Oxidative Processes PDF Author: Eduardo E. Wolf
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Plasma Catalysis

Plasma Catalysis PDF Author: Annemie Bogaerts
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.