The Brauer–Grothendieck Group

The Brauer–Grothendieck Group PDF Author: Jean-Louis Colliot-Thélène
Publisher: Springer Nature
ISBN: 3030742482
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.

The Brauer–Grothendieck Group

The Brauer–Grothendieck Group PDF Author: Jean-Louis Colliot-Thélène
Publisher: Springer Nature
ISBN: 3030742482
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.

The Brauer-Grothendieck Group

The Brauer-Grothendieck Group PDF Author: Jean-Louis Colliot-Thélène
Publisher:
ISBN: 9783030742492
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer-Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong's proof of Gabber's theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer-Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer-Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.

Graded Rings and Graded Grothendieck Groups

Graded Rings and Graded Grothendieck Groups PDF Author: Roozbeh Hazrat
Publisher: Cambridge University Press
ISBN: 1316727947
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
This study of graded rings includes the first systematic account of the graded Grothendieck group, a powerful and crucial invariant in algebra which has recently been adopted to classify the Leavitt path algebras. The book begins with a concise introduction to the theory of graded rings and then focuses in more detail on Grothendieck groups, Morita theory, Picard groups and K-theory. The author extends known results in the ungraded case to the graded setting and gathers together important results which are currently scattered throughout the literature. The book is suitable for advanced undergraduate and graduate students, as well as researchers in ring theory.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics PDF Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9401512396
Category : Mathematics
Languages : en
Pages : 496

Get Book Here

Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathema tics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclo paedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reason ably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of pre cise theorems with detailed definitions and technical details on how to carry out proofs and con structions.

Encyclopaedia of Mathematics (set)

Encyclopaedia of Mathematics (set) PDF Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9781556080104
Category : Mathematics
Languages : en
Pages : 982

Get Book Here

Book Description
The Encyclopaedia of Mathematics is the most up-to-date, authoritative and comprehensive English-language work of reference in mathematics which exists today. With over 7,000 articles from `A-integral' to `Zygmund Class of Functions', supplemented with a wealth of complementary information, and an index volume providing thorough cross-referencing of entries of related interest, the Encyclopaedia of Mathematics offers an immediate source of reference to mathematical definitions, concepts, explanations, surveys, examples, terminology and methods. The depth and breadth of content and the straightforward, careful presentation of the information, with the emphasis on accessibility, makes the Encyclopaedia of Mathematics an immensely useful tool for all mathematicians and other scientists who use, or are confronted by, mathematics in their work. The Enclyclopaedia of Mathematics provides, without doubt, a reference source of mathematical knowledge which is unsurpassed in value and usefulness. It can be highly recommended for use in libraries of universities, research institutes, colleges and even schools.

Cubic Forms

Cubic Forms PDF Author: Yu.I. Manin
Publisher: Elsevier
ISBN: 0080963161
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
Since this book was first published in English, there has been important progress in a number of related topics. The class of algebraic varieties close to the rational ones has crystallized as a natural domain for the methods developed and expounded in this volume. For this revised edition, the original text has been left intact (except for a few corrections) and has been brought up to date by the addition of an Appendix and recent references.The Appendix sketches some of the most essential new results, constructions and ideas, including the solutions of the Luroth and Zariski problems, the theory of the descent and obstructions to the Hasse principle on rational varieties, and recent applications of K-theory to arithmetic.

Étale Cohomology

Étale Cohomology PDF Author: James S. Milne
Publisher: Princeton University Press
ISBN: 0691273774
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
An authoritative introduction to the essential features of étale cohomology A. Grothendieck’s work on algebraic geometry is one of the most important mathematical achievements of the twentieth century. In the early 1960s, he and M. Artin introduced étale cohomology to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry but also in several different branches of number theory and in the representation theory of finite and p-adic groups. In this classic book, James Milne provides an invaluable introduction to étale cohomology, covering the essential features of the theory. Milne begins with a review of the basic properties of flat and étale morphisms and the algebraic fundamental group. He then turns to the basic theory of étale sheaves and elementary étale cohomology, followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Milne proves the fundamental theorems in étale cohomology—those of base change, purity, Poincaré duality, and the Lefschetz trace formula—and applies these theorems to show the rationality of some very general L-series.

Grothendieck-Serre Correspondence

Grothendieck-Serre Correspondence PDF Author: Pierre Colmez
Publisher: American Mathematical Society, Société Mathématique de France
ISBN: 1470469391
Category : Mathematics
Languages : en
Pages : 600

Get Book Here

Book Description
The book is a bilingual (French and English) edition of the mathematical correspondence between A. Grothendieck and J-P. Serre. The original French text of 84 letters is supplemented here by the English translation, with French text printed on the left-hand pages and the corresponding English text printed on the right-hand pages. The book also includes several facsimiles of original letters. The letters presented in the book were mainly written between 1955 and 1965. During this period, algebraic geometry went through a remarkable transformation, and Grothendieck and Serre were among central figures in this process. The reader can follow the creation of some of the most important notions of modern mathematics, like sheaf cohomology, schemes, Riemann-Roch type theorems, algebraic fundamental group, motives. The letters also reflect the mathematical and political atmosphere of this period (Bourbaki, Paris, Harvard, Princeton, war in Algeria, etc.). Also included are a few letters written between 1984 and 1987. The letters are supplemented by J-P. Serre's notes, which give explanations, corrections, and references further results. The book should be useful to specialists in algebraic geometry, in history of mathematics, and to all mathematicians who want to understand how great mathematics is created.

Number Theory III

Number Theory III PDF Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 3642582273
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see [La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideas for the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more.

Representations of Algebraic Groups

Representations of Algebraic Groups PDF Author: Jens Carsten Jantzen
Publisher: American Mathematical Soc.
ISBN: 9780821835272
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
Now back in print by the AMS, this is a significantly revised edition of a book originally published in 1987 by Academic Press. This book gives the reader an introduction to the theory of algebraic representations of reductive algebraic groups. To develop appropriate techniques, the first part of the book is an introduction to the general theory of representations of algebraic group schemes. Here, the author describes important basic notions: induction functors, cohomology,quotients, Frobenius kernels, and reduction mod $p$, among others. The second part of the book is devoted to the representation theory of reductive algebraic groups. It includes topics such as the description of simple modules, vanishing theorems, the Borel-Bott-Weil theorem and Weyl's character formula, andSchubert schemes and line bundles on them. For this revised edition the author added nearly 150 pages of new material describing some later developments, among them Schur algebras, Lusztig's conjecture and Kazhdan-Lusztig polynomials, tilting modules, and representations of quantum groups. He also made major revisions to parts of the old text. Jantzen's book continues to be the ultimate source of information on representations of algebraic groups in finite characteristics. It is suitable forgraduate students and research mathematicians interested in algebraic groups and their representations.