The Birational Geometry of Degenerations

The Birational Geometry of Degenerations PDF Author: Robert Friedman
Publisher: Birkhauser
ISBN:
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description

The Birational Geometry of Degenerations

The Birational Geometry of Degenerations PDF Author: Robert Friedman
Publisher: Birkhauser
ISBN:
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description


The Birational Geometry of Degenerations

The Birational Geometry of Degenerations PDF Author: Robert Friedman
Publisher: Birkhauser
ISBN:
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description


The Birational Geometry of Degenerations

The Birational Geometry of Degenerations PDF Author: FRIEDMANN
Publisher: Springer
ISBN: 9780817631116
Category : Science
Languages : en
Pages : 386

Get Book Here

Book Description


Birational Geometry and Moduli Spaces

Birational Geometry and Moduli Spaces PDF Author: Elisabetta Colombo
Publisher: Springer Nature
ISBN: 303037114X
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic symplectic manifolds, Severi varieties, degenerations of Calabi-Yau varieties, uniruled threefolds, toric Fano threefolds, mirror symmetry, canonical bundle formula, the Lefschetz principle, birational transformations, and deformations of diagrams of algebras. The intention is to disseminate the knowledge of advanced results and key techniques used to solve open problems. The book is intended for all advanced graduate students and researchers interested in the new research frontiers of birational geometry and moduli spaces.

Convex Bodies and Algebraic Geometry

Convex Bodies and Algebraic Geometry PDF Author: Tadao Oda
Publisher: Springer
ISBN: 9783642725494
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's. It is an updated and corrected English edition of the author's book in Japanese published by Kinokuniya, Tokyo in 1985. Toric varieties are here treated as complex analytic spaces. Without assuming much prior knowledge of algebraic geometry, the author shows how elementary convex figures give rise to interesting complex analytic spaces. Easily visualized convex geometry is then used to describe algebraic geometry for these spaces, such as line bundles, projectivity, automorphism groups, birational transformations, differential forms and Mori's theory. Hence this book might serve as an accessible introduction to current algebraic geometry. Conversely, the algebraic geometry of toric varieties gives new insight into continued fractions as well as their higher-dimensional analogues, the isoperimetric problem and other questions on convex bodies. Relevant results on convex geometry are collected together in the appendix.

Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Calabi-Yau Varieties: Arithmetic, Geometry and Physics PDF Author: Radu Laza
Publisher: Springer
ISBN: 1493928309
Category : Mathematics
Languages : en
Pages : 542

Get Book Here

Book Description
This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area. The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.

Geometry of Moduli

Geometry of Moduli PDF Author: Jan Arthur Christophersen
Publisher: Springer
ISBN: 3319948814
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
The proceedings from the Abel Symposium on Geometry of Moduli, held at Svinøya Rorbuer, Svolvær in Lofoten, in August 2017, present both survey and research articles on the recent surge of developments in understanding moduli problems in algebraic geometry. Written by many of the main contributors to this evolving subject, the book provides a comprehensive collection of new methods and the various directions in which moduli theory is advancing. These include the geometry of moduli spaces, non-reductive geometric invariant theory, birational geometry, enumerative geometry, hyper-kähler geometry, syzygies of curves and Brill-Noether theory and stability conditions. Moduli theory is ubiquitous in algebraic geometry, and this is reflected in the list of moduli spaces addressed in this volume: sheaves on varieties, symmetric tensors, abelian differentials, (log) Calabi-Yau varieties, points on schemes, rational varieties, curves, abelian varieties and hyper-Kähler manifolds.

Nonarchimedean and Tropical Geometry

Nonarchimedean and Tropical Geometry PDF Author: Matthew Baker
Publisher: Springer
ISBN: 3319309455
Category : Mathematics
Languages : en
Pages : 534

Get Book Here

Book Description
This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.

Lectures on K3 Surfaces

Lectures on K3 Surfaces PDF Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1107153042
Category : Mathematics
Languages : en
Pages : 499

Get Book Here

Book Description
Simple enough for detailed study, rich enough to show interesting behavior, K3 surfaces illuminate core methods in algebraic geometry.

A Celebration of Algebraic Geometry

A Celebration of Algebraic Geometry PDF Author: Brendan Hassett
Publisher: American Mathematical Soc.
ISBN: 0821889834
Category : Mathematics
Languages : en
Pages : 614

Get Book Here

Book Description
This volume resulted from the conference A Celebration of Algebraic Geometry, which was held at Harvard University from August 25-28, 2011, in honor of Joe Harris' 60th birthday. Harris is famous around the world for his lively textbooks and enthusiastic teaching, as well as for his seminal research contributions. The articles are written in this spirit: clear, original, engaging, enlivened by examples, and accessible to young mathematicians. The articles in this volume focus on the moduli space of curves and more general varieties, commutative algebra, invariant theory, enumerative geometry both classical and modern, rationally connected and Fano varieties, Hodge theory and abelian varieties, and Calabi-Yau and hyperkähler manifolds. Taken together, they present a comprehensive view of the long frontier of current knowledge in algebraic geometry. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).