Author: Richard M. Epand
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.
The Biophysics of Cell Membranes
Author: Richard M. Epand
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.
Membrane Biophysics
Author: Mohammad Ashrafuzzaman
Publisher: Springer Science & Business Media
ISBN: 3642161057
Category : Science
Languages : en
Pages : 190
Book Description
Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.
Publisher: Springer Science & Business Media
ISBN: 3642161057
Category : Science
Languages : en
Pages : 190
Book Description
Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.
Physics of Biological Membranes
Author: Patricia Bassereau
Publisher: Springer
ISBN: 3030006301
Category : Science
Languages : en
Pages : 616
Book Description
This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.
Publisher: Springer
ISBN: 3030006301
Category : Science
Languages : en
Pages : 616
Book Description
This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.
An Introduction to Biological Membranes
Author: William Stillwell
Publisher: Newnes
ISBN: 0080931286
Category : Science
Languages : en
Pages : 379
Book Description
An Introduction to Biological Membranes: From Bilayers to Rafts covers many aspects of membrane structure/function that bridges membrane biophysics and cell biology. Offering cohesive, foundational information, this publication is valuable for advanced undergraduate students, graduate students and membranologists who seek a broad overview of membrane science. - Brings together different facets of membrane research in a universally understandable manner - Emphasis on the historical development of the field - Topics include membrane sugars, membrane models, membrane isolation methods, and membrane transport
Publisher: Newnes
ISBN: 0080931286
Category : Science
Languages : en
Pages : 379
Book Description
An Introduction to Biological Membranes: From Bilayers to Rafts covers many aspects of membrane structure/function that bridges membrane biophysics and cell biology. Offering cohesive, foundational information, this publication is valuable for advanced undergraduate students, graduate students and membranologists who seek a broad overview of membrane science. - Brings together different facets of membrane research in a universally understandable manner - Emphasis on the historical development of the field - Topics include membrane sugars, membrane models, membrane isolation methods, and membrane transport
Cell Boundaries
Author: Stephen H White
Publisher: Garland Science
ISBN: 1000508536
Category : Medical
Languages : en
Pages : 565
Book Description
The central themes of Cell Boundaries concern the structural and organizational principles underlying cell membranes, and how these principles enable function. By building a biological and biophysical foundation for understanding the organization of lipids in bilayers and the folding, assembly, stability, and function of membrane proteins, the book aims to broaden the knowledge of bioscience students to include the basic physics and physical chemistry that inform us about membranes. In doing so, it is hoped that physics students will find familiar territory that will lead them to an interest in biology. Our progress toward understanding membranes and membrane proteins depends strongly upon the concerted use of both biology and physics. It is important for students to know not only what we know, but how we have come to know it, so Cell Boundaries endeavours to bring out the history behind the central discoveries, especially in the early chapters, where the foundation is laid for later chapters. Science is far more interesting if, as students, we can appreciate and share in the adventures—and misadventures—of discovering new scientific knowledge. Cell Boundaries was written with advanced undergraduates and beginning graduate students in the biological and physical sciences in mind, though this textbook will likely have appeal to researchers and other academics as well. Highlights the history of important central discoveries Early chapters lay the foundation for later chapters to build on, so knowledge is amassed High-quality line diagrams illustrate key concepts and illuminate molecular mechanisms Box features and spreads expand on topics in main text, including histories of discoveries, special techniques, and applications
Publisher: Garland Science
ISBN: 1000508536
Category : Medical
Languages : en
Pages : 565
Book Description
The central themes of Cell Boundaries concern the structural and organizational principles underlying cell membranes, and how these principles enable function. By building a biological and biophysical foundation for understanding the organization of lipids in bilayers and the folding, assembly, stability, and function of membrane proteins, the book aims to broaden the knowledge of bioscience students to include the basic physics and physical chemistry that inform us about membranes. In doing so, it is hoped that physics students will find familiar territory that will lead them to an interest in biology. Our progress toward understanding membranes and membrane proteins depends strongly upon the concerted use of both biology and physics. It is important for students to know not only what we know, but how we have come to know it, so Cell Boundaries endeavours to bring out the history behind the central discoveries, especially in the early chapters, where the foundation is laid for later chapters. Science is far more interesting if, as students, we can appreciate and share in the adventures—and misadventures—of discovering new scientific knowledge. Cell Boundaries was written with advanced undergraduates and beginning graduate students in the biological and physical sciences in mind, though this textbook will likely have appeal to researchers and other academics as well. Highlights the history of important central discoveries Early chapters lay the foundation for later chapters to build on, so knowledge is amassed High-quality line diagrams illustrate key concepts and illuminate molecular mechanisms Box features and spreads expand on topics in main text, including histories of discoveries, special techniques, and applications
Molecular Biology of the Cell
Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Introduction to Cellular Biophysics, Volume 1
Author: Armin Kargol
Publisher:
ISBN: 9781643274126
Category :
Languages : en
Pages : 118
Book Description
All living matter is comprised of cells; small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are a single cell and all life functions are performed by that cell. Others have groups of cells, or entire organs, specializing in one particular function. The survival of the entire organism depends on all its cells and organs fulfilling their roles. The aim of this book is to investigate the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and that, in turn, leads to the biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goal of every cell is to stay alive and to fulfil its function as a part of a larger organ or organism. This first volume is an inventory of physical transport processes occurring in cells, while the second volume will take a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
Publisher:
ISBN: 9781643274126
Category :
Languages : en
Pages : 118
Book Description
All living matter is comprised of cells; small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are a single cell and all life functions are performed by that cell. Others have groups of cells, or entire organs, specializing in one particular function. The survival of the entire organism depends on all its cells and organs fulfilling their roles. The aim of this book is to investigate the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and that, in turn, leads to the biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goal of every cell is to stay alive and to fulfil its function as a part of a larger organ or organism. This first volume is an inventory of physical transport processes occurring in cells, while the second volume will take a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
Molecular Biology of Membranes
Author: H.R. Petty
Publisher: Springer Science & Business Media
ISBN: 1489911464
Category : Science
Languages : en
Pages : 416
Book Description
This text attempts to introduce the molecular biology of cell membranes to students and professionals of diverse backgrounds. Although several membrane biology books are available, they do not integrate recent knowledge gained using modern molecular tools with more traditional membrane topics. Molecular techniques, such as cDNA cloning and x-ray diffraction, have provided fresh insights into cell membrane structure and function. The great excitement today, which I attempt to convey in this book, is that molecular details are beginning to merge with physiological responses. In other words, we are beginning to understand precisely how membranes work. This textbook is appropriate for upper-level undergraduate or beginning graduate students. Readers should have previous or concurrent coursework in biochemistry; prior studies in elementary physiology would be helpful. I have found that the presentation of topics in this book is appropriate for students of biology, biochemistry, biophysics and physiology, chemistry, and medicine. This book will be useful in courses focusing on membranes and as a supplementary text in biochemistry courses. Professionals will also find this to be a useful resource book for their personal libraries.
Publisher: Springer Science & Business Media
ISBN: 1489911464
Category : Science
Languages : en
Pages : 416
Book Description
This text attempts to introduce the molecular biology of cell membranes to students and professionals of diverse backgrounds. Although several membrane biology books are available, they do not integrate recent knowledge gained using modern molecular tools with more traditional membrane topics. Molecular techniques, such as cDNA cloning and x-ray diffraction, have provided fresh insights into cell membrane structure and function. The great excitement today, which I attempt to convey in this book, is that molecular details are beginning to merge with physiological responses. In other words, we are beginning to understand precisely how membranes work. This textbook is appropriate for upper-level undergraduate or beginning graduate students. Readers should have previous or concurrent coursework in biochemistry; prior studies in elementary physiology would be helpful. I have found that the presentation of topics in this book is appropriate for students of biology, biochemistry, biophysics and physiology, chemistry, and medicine. This book will be useful in courses focusing on membranes and as a supplementary text in biochemistry courses. Professionals will also find this to be a useful resource book for their personal libraries.
Membrane Structural Biology
Author: Mary Luckey
Publisher: Cambridge University Press
ISBN: 1107729335
Category : Science
Languages : en
Pages : 427
Book Description
This textbook provides a strong foundation and a clear overview for students of membrane biology and an invaluable synthesis of cutting-edge research for working scientists. The text retains its clear and engaging style, providing a solid background in membrane biochemistry, while also incorporating the approaches of biophysics, genetics and cell biology to investigations of membrane structure, function and biogenesis to provide a unique overview of this fast-moving field. A wealth of new high resolution structures of membrane proteins are presented, including the Na/K pump and a receptor-G protein complex, offering exciting insights into how they function. All key tools of current membrane research are described, including detergents and model systems, bioinformatics, protein-folding methodology, crystallography and diffraction, and molecular modeling. This comprehensive and up-to-date text, emphasising the correlations between membrane research and human health, provides a solid foundation for all those working in this field.
Publisher: Cambridge University Press
ISBN: 1107729335
Category : Science
Languages : en
Pages : 427
Book Description
This textbook provides a strong foundation and a clear overview for students of membrane biology and an invaluable synthesis of cutting-edge research for working scientists. The text retains its clear and engaging style, providing a solid background in membrane biochemistry, while also incorporating the approaches of biophysics, genetics and cell biology to investigations of membrane structure, function and biogenesis to provide a unique overview of this fast-moving field. A wealth of new high resolution structures of membrane proteins are presented, including the Na/K pump and a receptor-G protein complex, offering exciting insights into how they function. All key tools of current membrane research are described, including detergents and model systems, bioinformatics, protein-folding methodology, crystallography and diffraction, and molecular modeling. This comprehensive and up-to-date text, emphasising the correlations between membrane research and human health, provides a solid foundation for all those working in this field.
Thermal Biophysics of Membranes
Author: Thomas Heimburg
Publisher: John Wiley & Sons
ISBN: 3527611606
Category : Science
Languages : en
Pages : 378
Book Description
An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.
Publisher: John Wiley & Sons
ISBN: 3527611606
Category : Science
Languages : en
Pages : 378
Book Description
An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.