The Asymptotic Distribution of Eigenvalues of Partial Differential Operators

The Asymptotic Distribution of Eigenvalues of Partial Differential Operators PDF Author: Yu Safarov
Publisher: American Mathematical Soc.
ISBN: 9780821845776
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
This work studies the eigenvalues of elliptic linear boundary value problems. Its main content is a set of asymptotic formulas describing the distribution of eigenvalues with high sequential numbers, providing a basic introduction to mathematical concepts and tools.

The Asymptotic Distribution of Eigenvalues of Partial Differential Operators

The Asymptotic Distribution of Eigenvalues of Partial Differential Operators PDF Author: Yu Safarov
Publisher: American Mathematical Soc.
ISBN: 9780821845776
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
This work studies the eigenvalues of elliptic linear boundary value problems. Its main content is a set of asymptotic formulas describing the distribution of eigenvalues with high sequential numbers, providing a basic introduction to mathematical concepts and tools.

The Asymptotic Distribution of Eigenvalues of Partial Differential Operators

The Asymptotic Distribution of Eigenvalues of Partial Differential Operators PDF Author: Yu Safarov
Publisher:
ISBN: 9781470445706
Category : Asymptotic distribution (Probability theory)
Languages : en
Pages : 370

Get Book Here

Book Description
As the subject of extensive research for over a century, spectral asymptotics for partial differential operators attracted the attention of many outstanding mathematicians and physicists. This book studies the eigenvalues of elliptic linear boundary value problems and has as its main content a collection of asymptotic formulas describing the distribution of eigenvalues with high sequential numbers. Asymptotic formulas are used to illustrate standard eigenvalue problems of mechanics and mathematical physics. The volume provides a basic introduction to all the necessary mathematical concepts and.

Microlocal Analysis and Precise Spectral Asymptotics

Microlocal Analysis and Precise Spectral Asymptotics PDF Author: Victor Ivrii
Publisher: Springer Science & Business Media
ISBN: 3662124963
Category : Mathematics
Languages : en
Pages : 736

Get Book Here

Book Description
The problem of spectral asymptotics, in particular the problem of the asymptotic dis tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; moreover, it is very important for the general theory of partial differential operators. I started working in this domain in 1979 after R. Seeley found a remainder estimate of the same order as the then hypothetical second term for the Laplacian in domains with boundary, and M. Shubin and B. M. Levitan suggested that I should try to prove Weyl's conjecture. During the past fifteen years I have not left the topic, although I had such intentions in 1985 when the methods I invented seemed to fai! to provide furt her progress and only a couple of not very exciting problems remained to be solved. However, at that time I made the step toward local semiclassical spectral asymptotics and rescaling, and new horizons opened.

Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities

Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities PDF Author: Rupert L. Frank
Publisher: Cambridge University Press
ISBN: 1009218441
Category : Mathematics
Languages : en
Pages : 524

Get Book Here

Book Description
The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research.

Spectral Theory and Differential Operators

Spectral Theory and Differential Operators PDF Author: David Eric Edmunds
Publisher: Oxford University Press
ISBN: 0198812051
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.

Partial Differential Equations II

Partial Differential Equations II PDF Author: Yu.V. Egorov
Publisher: Springer Science & Business Media
ISBN: 3642578764
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics.

Selected Papers on Analysis, Probability, and Statistics

Selected Papers on Analysis, Probability, and Statistics PDF Author: Katsumi Nomizu
Publisher: American Mathematical Soc.
ISBN: 9780821875124
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
This book presents papers in the general area of mathematical analysis as it pertains to probability and statistics, dynamical systems, differential equations, and analytic function theory. Among the topics discussed are: stochastic differential equations, spectra of the Laplacian and Schrödinger operators, nonlinear partial differential equations which generate dissipative dynamical systems, fractal analysis on self-similar sets, and the global structure of analytic functions.

Theory of Function Spaces III

Theory of Function Spaces III PDF Author: Hans Triebel
Publisher: Springer Science & Business Media
ISBN: 3764375825
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.

Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems

Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems PDF Author: Vesselin M. Petkov
Publisher: John Wiley & Sons
ISBN: 1119107695
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
This book is a new edition of a title originally published in1992. No other book has been published that treats inverse spectral and inverse scattering results by using the so called Poisson summation formula and the related study of singularities. This book presents these in a closed and comprehensive form, and the exposition is based on a combination of different tools and results from dynamical systems, microlocal analysis, spectral and scattering theory. The content of the first edition is still relevant, however the new edition will include several new results established after 1992; new text will comprise about a third of the content of the new edition. The main chapters in the first edition in combination with the new chapters will provide a better and more comprehensive presentation of importance for the applications inverse results. These results are obtained by modern mathematical techniques which will be presented together in order to give the readers the opportunity to completely understand them. Moreover, some basic generic properties established by the authors after the publication of the first edition establishing the wide range of applicability of the Poison relation will be presented for first time in the new edition of the book.

Control of Higher–Dimensional PDEs

Control of Higher–Dimensional PDEs PDF Author: Thomas Meurer
Publisher: Springer Science & Business Media
ISBN: 3642300154
Category : Technology & Engineering
Languages : en
Pages : 373

Get Book Here

Book Description
This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smart elastic structures - the generalization of flatness-based trajectory planning and feedforward control to parabolic and biharmonic PDE systems defined on general higher-dimensional domains - an extension of the backstepping approach to the feedback control and observer design for parabolic PDEs with parallelepiped domain and spatially and time varying parameters - the development of design techniques to realize exponentially stabilizing tracking control - the evaluation in simulations and experiments Control of Higher-Dimensional PDEs — Flatness and Backstepping Designs is an advanced research monograph for graduate students in applied mathematics, control theory, and related fields. The book may serve as a reference to recent developments for researchers and control engineers interested in the analysis and control of systems governed by PDEs.