Author: Jacques Sesiano
Publisher: Springer Science & Business Media
ISBN: 1461381746
Category : Mathematics
Languages : en
Pages : 507
Book Description
This edition of Books IV to VII of Diophantus' Arithmetica, which are extant only in a recently discovered Arabic translation, is the outgrowth of a doctoral dissertation submitted to the Brown University Department of the History of Mathematics in May 1975. Early in 1973, my thesis adviser, Gerald Toomer, learned of the existence of this manuscript in A. Gulchln-i Macanl's just-published catalogue of the mathematical manuscripts in the Mashhad Shrine Library, and secured a photographic copy of it. In Sep tember 1973, he proposed that the study of it be the subject of my dissertation. Since limitations of time compelled us to decide on priorities, the first objective was to establish a critical text and to translate it. For this reason, the Arabic text and the English translation appear here virtually as they did in my thesis. Major changes, however, are found in the mathematical com mentary and, even more so, in the Arabic index. The discussion of Greek and Arabic interpolations is entirely new, as is the reconstruction of the history of the Arithmetica from Diophantine to Arabic times. It is with the deepest gratitude that I acknowledge my great debt to Gerald Toomer for his constant encouragement and invaluable assistance.
Books IV to VII of Diophantus’ Arithmetica
Author: Jacques Sesiano
Publisher: Springer Science & Business Media
ISBN: 1461381746
Category : Mathematics
Languages : en
Pages : 507
Book Description
This edition of Books IV to VII of Diophantus' Arithmetica, which are extant only in a recently discovered Arabic translation, is the outgrowth of a doctoral dissertation submitted to the Brown University Department of the History of Mathematics in May 1975. Early in 1973, my thesis adviser, Gerald Toomer, learned of the existence of this manuscript in A. Gulchln-i Macanl's just-published catalogue of the mathematical manuscripts in the Mashhad Shrine Library, and secured a photographic copy of it. In Sep tember 1973, he proposed that the study of it be the subject of my dissertation. Since limitations of time compelled us to decide on priorities, the first objective was to establish a critical text and to translate it. For this reason, the Arabic text and the English translation appear here virtually as they did in my thesis. Major changes, however, are found in the mathematical com mentary and, even more so, in the Arabic index. The discussion of Greek and Arabic interpolations is entirely new, as is the reconstruction of the history of the Arithmetica from Diophantine to Arabic times. It is with the deepest gratitude that I acknowledge my great debt to Gerald Toomer for his constant encouragement and invaluable assistance.
Publisher: Springer Science & Business Media
ISBN: 1461381746
Category : Mathematics
Languages : en
Pages : 507
Book Description
This edition of Books IV to VII of Diophantus' Arithmetica, which are extant only in a recently discovered Arabic translation, is the outgrowth of a doctoral dissertation submitted to the Brown University Department of the History of Mathematics in May 1975. Early in 1973, my thesis adviser, Gerald Toomer, learned of the existence of this manuscript in A. Gulchln-i Macanl's just-published catalogue of the mathematical manuscripts in the Mashhad Shrine Library, and secured a photographic copy of it. In Sep tember 1973, he proposed that the study of it be the subject of my dissertation. Since limitations of time compelled us to decide on priorities, the first objective was to establish a critical text and to translate it. For this reason, the Arabic text and the English translation appear here virtually as they did in my thesis. Major changes, however, are found in the mathematical com mentary and, even more so, in the Arabic index. The discussion of Greek and Arabic interpolations is entirely new, as is the reconstruction of the history of the Arithmetica from Diophantine to Arabic times. It is with the deepest gratitude that I acknowledge my great debt to Gerald Toomer for his constant encouragement and invaluable assistance.
Diophantus of Alexandria
Author: Thomas L. Heath
Publisher: CUP Archive
ISBN:
Category : Algebra
Languages : en
Pages : 406
Book Description
Publisher: CUP Archive
ISBN:
Category : Algebra
Languages : en
Pages : 406
Book Description
An Adventurer's Guide to Number Theory
Author: Richard Friedberg
Publisher: Courier Corporation
ISBN: 0486152693
Category : Mathematics
Languages : en
Pages : 241
Book Description
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.
Publisher: Courier Corporation
ISBN: 0486152693
Category : Mathematics
Languages : en
Pages : 241
Book Description
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.
An Introduction to Diophantine Equations
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Recreations in mathematics and natural philosophy, recomposed by m. Montucla and tr. by C. Hutton
Author: Jacques Ozanam
Publisher:
ISBN:
Category :
Languages : en
Pages : 850
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 850
Book Description
Number Theory and Geometry: An Introduction to Arithmetic Geometry
Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506
Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506
Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Greek Mathematical Thought and the Origin of Algebra
Author: Jacob Klein
Publisher: Courier Corporation
ISBN: 0486319814
Category : Mathematics
Languages : en
Pages : 246
Book Description
Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.
Publisher: Courier Corporation
ISBN: 0486319814
Category : Mathematics
Languages : en
Pages : 246
Book Description
Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.
Amazing Traces of a Babylonian Origin in Greek Mathematics
Author: Jran Friberg
Publisher: World Scientific
ISBN: 9812704523
Category : Science
Languages : en
Pages : 497
Book Description
The sequel to Unexpected Links Between Egyptian and Babylonian Mathematics (World Scientific, 2005), this book is based on the author's intensive and ground breaking studies of the long history of Mesopotamian mathematics, from the late 4th to the late 1st millennium BC. It is argued in the book that several of the most famous Greek mathematicians appear to have been familiar with various aspects of Babylonian “metric algebra,” a convenient name for an elaborate combination of geometry, metrology, and quadratic equations that is known from both Babylonian and pre-Babylonian mathematical clay tablets. The book's use of “metric algebra diagrams” in the Babylonian style, where the side lengths and areas of geometric figures are explicitly indicated, instead of wholly abstract “lettered diagrams” in the Greek style, is essential for an improved understanding of many interesting propositions and constructions in Greek mathematical works. The author's comparisons with Babylonian mathematics also lead to new answers to some important open questions in the history of Greek mathematics.
Publisher: World Scientific
ISBN: 9812704523
Category : Science
Languages : en
Pages : 497
Book Description
The sequel to Unexpected Links Between Egyptian and Babylonian Mathematics (World Scientific, 2005), this book is based on the author's intensive and ground breaking studies of the long history of Mesopotamian mathematics, from the late 4th to the late 1st millennium BC. It is argued in the book that several of the most famous Greek mathematicians appear to have been familiar with various aspects of Babylonian “metric algebra,” a convenient name for an elaborate combination of geometry, metrology, and quadratic equations that is known from both Babylonian and pre-Babylonian mathematical clay tablets. The book's use of “metric algebra diagrams” in the Babylonian style, where the side lengths and areas of geometric figures are explicitly indicated, instead of wholly abstract “lettered diagrams” in the Greek style, is essential for an improved understanding of many interesting propositions and constructions in Greek mathematical works. The author's comparisons with Babylonian mathematics also lead to new answers to some important open questions in the history of Greek mathematics.
Critical Mathematics Education
Author: Paul Ernest
Publisher: IAP
ISBN: 1681232618
Category : Education
Languages : en
Pages : 361
Book Description
Mathematics is traditionally seen as the most neutral of disciplines, the furthest removed from the arguments and controversy of politics and social life. However, critical mathematics challenges these assumptions and actively attacks the idea that mathematics is pure, objective, and value?neutral. It argues that history, society, and politics have shaped mathematics—not only through its applications and uses but also through molding its concepts, methods, and even mathematical truth and proof, the very means of establishing truth. Critical mathematics education also attacks the neutrality of the teaching and learning of mathematics, showing how these are value?laden activities indissolubly linked to social and political life. Instead, it argues that the values of openness, dialogicality, criticality towards received opinion, empowerment of the learner, and social/political engagement and citizenship are necessary dimensions of the teaching and learning of mathematics, if it is to contribute towards democracy and social justice. This book draws together critical theoretic contributions on mathematics and mathematics education from leading researchers in the field. Recurring themes include: The natures of mathematics and critical mathematics education, issues of epistemology and ethics; Ideology, the hegemony of mathematics, ethnomathematics, and real?life education; Capitalism, globalization, politics, social class, habitus, citizenship and equity. The book demonstrates the links between these themes and the discipline of mathematics, and its critical teaching and learning. The outcome is a groundbreaking collection unified by a shared concern with critical perspectives of mathematics and education, and of the ways they impact on practice.
Publisher: IAP
ISBN: 1681232618
Category : Education
Languages : en
Pages : 361
Book Description
Mathematics is traditionally seen as the most neutral of disciplines, the furthest removed from the arguments and controversy of politics and social life. However, critical mathematics challenges these assumptions and actively attacks the idea that mathematics is pure, objective, and value?neutral. It argues that history, society, and politics have shaped mathematics—not only through its applications and uses but also through molding its concepts, methods, and even mathematical truth and proof, the very means of establishing truth. Critical mathematics education also attacks the neutrality of the teaching and learning of mathematics, showing how these are value?laden activities indissolubly linked to social and political life. Instead, it argues that the values of openness, dialogicality, criticality towards received opinion, empowerment of the learner, and social/political engagement and citizenship are necessary dimensions of the teaching and learning of mathematics, if it is to contribute towards democracy and social justice. This book draws together critical theoretic contributions on mathematics and mathematics education from leading researchers in the field. Recurring themes include: The natures of mathematics and critical mathematics education, issues of epistemology and ethics; Ideology, the hegemony of mathematics, ethnomathematics, and real?life education; Capitalism, globalization, politics, social class, habitus, citizenship and equity. The book demonstrates the links between these themes and the discipline of mathematics, and its critical teaching and learning. The outcome is a groundbreaking collection unified by a shared concern with critical perspectives of mathematics and education, and of the ways they impact on practice.
Making up Numbers: A History of Invention in Mathematics
Author: Ekkehard Kopp
Publisher: Open Book Publishers
ISBN: 1800640978
Category : Mathematics
Languages : en
Pages : 282
Book Description
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
Publisher: Open Book Publishers
ISBN: 1800640978
Category : Mathematics
Languages : en
Pages : 282
Book Description
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.