The Application of Ultrafast Laser Pulses to Laser Desorption Mass Spectrometry

The Application of Ultrafast Laser Pulses to Laser Desorption Mass Spectrometry PDF Author: Yang Cui
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

The Application of Ultrafast Laser Pulses to Laser Desorption Mass Spectrometry

The Application of Ultrafast Laser Pulses to Laser Desorption Mass Spectrometry PDF Author: Yang Cui
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Photoionization and Photo-Induced Processes in Mass Spectrometry

Photoionization and Photo-Induced Processes in Mass Spectrometry PDF Author: Ralf Zimmermann
Publisher: John Wiley & Sons
ISBN: 3527335102
Category : Science
Languages : en
Pages : 448

Get Book Here

Book Description
Provides comprehensive coverage of laser-induced ionization processes for mass spectrometry analysis Drawing on the expertise of the leading academic and industrial research groups involved in the development of photoionization methods for mass spectrometry, this reference for analytical scientists covers both the theory and current applications of photo-induced ionization processes. It places widely used techniques such as MALDI side by side with more specialist approaches such as REMPI and RIMS, and discusses leading edge developments in ultrashort laser pulse desorption, to give readers a complete picture of the state of the technology. Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications starts with a complete overview of the fundamentals of the technique, covering the basics of the gas phase ionization as well as those of laser desorption and ablation, pulse photoionization, and single particle ionization. Numerous application examples from different analytical fields are described that showcase the power and the wide scope of photo ionization in mass spectrometry. -The first general reference book on photoionization techniques for mass spectrometry -Examines technologies and applications of gas phase resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS) and gas phase resonance ionization mass spectrometry (RIMS) -Provides complete coverage of popular techniques like MALDI -Discusses the current and potential applications of each technology, focusing on process and environmental analysis Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications is an excellent book for spectroscopists, analytical chemists, photochemists, physical chemists, and laser specialists.

Lasers and Mass Spectrometry

Lasers and Mass Spectrometry PDF Author: David M. Lubman
Publisher: Oxford University Press, USA
ISBN: 0195059298
Category : Science
Languages : en
Pages : 560

Get Book Here

Book Description
Contributors to this volume focus on the fundamentals of the technique of analyzing material based on the atomic weight of the species, using the power and definition of lasers to enable measurement of smaller quantities and more finely localized particles. Each chapter deals with a particular application area and should be sufficient to form an entry point for the utilization of mass spectrometry by graduate students and researchers. The book provides the first full discussion of the new techniques of laser applications in the field.

Investigating the Instrumentational Components of Laser Electrospray Mass Spectrometry

Investigating the Instrumentational Components of Laser Electrospray Mass Spectrometry PDF Author: Rachel Parise
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Analytical method validation is the process of establishing that an analytical technique is applicable for a proposed objective. Early in the method development of a new analytical technique an understanding of the instrumental components and procedures is elaborated through scientifically based optimization. The optimization experiments are used to define the operational parameters that yield the maximum performance by the analytical technique for the target analyte before commencing validation studies. This dissertation details method development through experimental investigations instrumental components of LEMS (substrate, laser parameters, and electrospray source conditions). Each instrumental component has a number of induvial parameters which are optimized to yield the maximum laser electrospray mass spectrometry (LEMS) signal intensity for a given analytical problem. LEMS uses a nonresonant, femtosecond (fs) laser to ablate analytes from a surface. Those ablated analytes are then captured by a perpendicular electrospray, ionized, and desolvated to produce ions which travel into the inlet of the mass spectrometer for analysis. Each element of the LEMS experimental setup works in a complementary fashion to generate a mass spectral signal which have specific optimization steps that can dramatically impact the data that can be acquired. The results of the optimization for each instrumental component will then be applied to preliminary method development experiments for the analysis of pharmaceutical compounds from complex formulations biomarker discovery for mice afflicted with a traumatic brain injury.The effect of the laser pulse duration on the ablation mechanism and amount of laser induced conformational changes of aqueous myoglobin was investigated using 55 fs, 56 picosecond (ps), and 10 nanosecond (ns) pulses and laser pulse energies from 0.05 to 1.6 mJ. It was found that the optical properties of the substrates (stainless-steel and quartz) and laser intensity regimes accessible by each pulse duration determined the amount of myoglobin ablated and subsequent mass spectral signal intensity. Laser ablation of myoglobin from both substrates using all laser pulse energies was observed for the 55 fs pulse while the 10 ns pulse required minimum pulse energies of 0.4 and 1.2 mJ for ablation of myoglobin to occur from stainless-steel and quartz, respectively. As the pulse duration increases, thermal processes increase which dictated the relative amount of protein unfolding, number of phosphate adducts, and degree of solvent adduction. Many of the common laser electrospray ionization (ESI) hybrid techniques employ ns pulse durations. However, the amount of ablated myoglobin originating from a ns pulse was observed to be dependent on the amount of energy that was absorbed by the substrate or sample. Experiments to increase the signal intensity while implementing ns laser electrospray mass spectrometry (ns-LEMS) were performed by exploiting the optical properties of nanomaterials as a potential matrix for desorption and detection of myoglobin. To estimate the contribution of the surface plasmon resonance (SPR) to the desorption of myoglobin under the different pulse duration regimes, the addition of an aqueous gold nanostar (GNS) matrix was implemented. GNSs have a SPR maximum of ~750 nm which overlaps strongly with the 780 nm laser wavelength. Gold nanospheres, which have a SPR of ~530 nm, have an absorption overlap 25 times less than that of the nanostars with the 785 nm laser light and therefore were chosen as a control gold nanoparticle matrix. It was observed that protein mixed with solution phase GNSs improved the laser ablation and consequent mass spectral signal intensity of the protein in comparison to both the nanosphere addition and ablation from quartz without nanomaterial addition for the 55 fs, 56 ps, and 10 ns pulses. This dissertation also extends to an investigation of the electrospray source and the roles that the nebulizing gas pressure, electrospray solution flow rate, and needle protrusion from the emitter sheath effects the electrospray analyte signal and stability. Interactions between the electrospray droplets and nebulizing gas were elucidated using an ablation chamber in which laser ablated analytes were carried via the nebulizing gas flow through the nebulizer sheath to interact with the electrospray Taylor cone, jet, and subsequent droplets. The signal intensity and relative standard deviation (RSD) of an infused Victoria blue solution was used to assess conventional ESI optimization experiments while a mixture of Gly-Gly-His, lactose, adenosine, and vitamin B12 was laser ablated within the ablation chamber for the optimization of the remote ablation device. It was found that a needle protrusion flush with the nebulizing sheath wall, 9 psi nebulizing gas pressure, and 9 μL/min ESI flow rate yielded the highest signal intensity for low and high mass analytes when utilizing the ablation chamber. However, the conventional ESI signal and stability was maximized using a needle protrusion of 0.6 mm from the sheath, 18 psi nebulizing gas pressure, and 9 μL/ min ESI flow rate. The last two chapters describe collaborative efforts with GlaxoSmithKline (GSK) and Temple University's Lewis Katz School of Medicine with the application of LEMS to real world problems. The first of these chapters explores the preliminary method development results for sampling protocols of LEMS in a pathway to measuring the active ingredient in a formulation when differences in concentration are a percent or less for GSK. The results from the method development and optimization experiments in the previous chapters were applied to the GSK pharmaceutical manufacturing paradigm to test product quality in-line and in real-time instead of testing in a lab at the end of the manufacturing process. The LEMS sampling protocols involved ablation of either powder, compressed form, or solution containing powder using laser ablation. The ablated material was then entrained in an electrospray aerosol and transferred into a mass spectrometer for quantitative measurement of the molecules making up the powder, pill, or solution. Measurement time was on the order of seconds so that thousands of samples can be potentially measured in an hour. Future prospective experiments include additional optimization of the solution phase and compressed form sampling methods and, ultimately, the method validation of LEMS for quantifying active ingredients in pharmaceutical formulations. The last chapter seeks to develop new methods to map all biomarkers in traumatic brain injury (TBI) through mass spectrometry imaging (MSI), serum analysis, and protein derivatization assays. In this work, the Ramirez laboratory employs the controlled cortical impact model of experimental TBI in mice, harvests the brain (post injury) and prepares sections for analytical analysis. TBI is a complex injury involving multiple physiological and biochemical alterations to tissue. The potentially thousands of relevant biomarkers spread over a volume of thousands of mm3 makes the spatially resolved chemical analysis of brain a big data problem to which principal component analysis is applied.

Laser Electrospray Mass Spectrometry

Laser Electrospray Mass Spectrometry PDF Author: Paul M. Flanigan IV
Publisher:
ISBN:
Category :
Languages : en
Pages : 361

Get Book Here

Book Description
This dissertation elucidates a greater understanding of the vaporization and electrospray post-ionization mechanisms when using femtosecond laser pulses for desorption of surface molecules and electrospray ionization for capture and mass analysis of the gas phase ions. The internal energy deposition from nonresonant vaporization with femtosecond laser pulses was measured using dried and liquid samples of p-substituted benzylpyridinium ions and peptides. In the comparison of the experiments of using 800 nm and 1042 nm laser pulses, it was found that there are different vaporization mechanisms for dried and liquid samples. It was established that LEMS is a "soft" mass analysis technique as it resulted in comparable internal energy distributions to ESI-MS with one caveat; multiphoton excitation of dried samples results in extensive fragmentation at higher pulse energies. The quantitative aspects of the laser electrospray mass spectrometry (LEMS) technique were established using various multicomponent mixtures of small biomolecules. Experiments with LEMS resulted in similar quantitative characteristics to ESI-MS except that ESI-MS demonstrated a greater degree of ion suppression when using higher concentrations, particularly in the four-component mixture. The lack of ion suppression in the LEMS measurements was due to the ~1% neutral capture efficiency and most likely not a result of nonequilibrium partitioning. This was supported by the excess charge limit not being surpassed in the LEMS experiments and the quantitative analysis requiring the use of response factors. This dissertation also expanded upon the use of multivariate analysis for the classification of samples that were directly mass analyzed without any sample preparation using LEMS. A novel electrospray complexation mixture using cationic pairing agents, a lipid, and sodium acetate enabled the simultaneous detection of positive, neutral and negative charged features of inorganic-based explosive residues in a single experiment. This complexation mixture also enabled the detection of new features from an RDX-based propellant mixture. Principal component analysis (PCA) proved reliable for accurate classifications of the explosive mixtures. PCA was also used for accurate classification of eight phenotypes of Impatiens plant flower petals after mass analysis with LEMS. The PCA loading values were used to identify the key biomarkers in the classification. These important mass spectral features were identified as the biologically-relevant anthocyanins, which are phytochemicals that are responsible for the color of the flower petals.

Laser Desorption Ionization Mass Spectrometry Based on Nanophotonic Structure: From Material Design to Mechanistic Understanding

Laser Desorption Ionization Mass Spectrometry Based on Nanophotonic Structure: From Material Design to Mechanistic Understanding PDF Author: Moon-Ju Kim
Publisher: Springer Nature
ISBN: 981996878X
Category : Science
Languages : en
Pages : 107

Get Book Here

Book Description
This book presents innovative laser desorption ionization (LDI)-active nanophotonic structures for addressing the challenges that matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is currently facing and for enhancing LDI efficiency. It presents a variety of cutting-edge nanophotonic structures to satisfy the mass-analytical needs of sensitivity, reproducibility, and quantification. As opposed to the commercialized, conventional organic matrix used in MALDI-MS, these nanostructures are validated to be highly effective in detecting small metabolites and drugs, highlighting their considerable potential in the mass spectrometry field. It also systematically elucidates fundamental LDI processes in terms of the photo-thermal, electronic, and structural characteristics of nanophotonic structures, offering mechanistic knowledge of LDI-MS. Even though LDI-MS performance is heavily influenced by a number of nanostructure parameters, relatively little is known about the LDI processes associated with those characteristics. An in-depth understanding of nanostructure characteristics and LDI mechanisms thus paves the way for more effective, rational design and development of nanostructures with improved LDI capabilities. Further, with a focus on multiple cascades in nanostructure functions in response to laser pulse stimuli, this book provides detailed, step-by-step procedures to design and construct a nanophotonic, LDI-active platform, which may serve as a roadmap for graduate students in the field of mass spectrometry. Readers, including graduate students, researchers, and experts working in the related areas of mass spectrometry, nanophotonics, and material science and material engineering, will find a wealth of useful information in this book.

Fundamentals and Applications of Fourier Transform Mass Spectrometry

Fundamentals and Applications of Fourier Transform Mass Spectrometry PDF Author: Philippe Schmitt-Kopplin
Publisher: Elsevier
ISBN: 0128140143
Category : Science
Languages : en
Pages : 780

Get Book Here

Book Description
Fundamentals and Applications of Fourier Transform Mass Spectrometry is the first book to delve into the underlying principles on the topic and their linkage to industrial applications. Drs. Schmitt-Kopplin and Kanawati have brought together a team of leading experts in their respective fields to present this technique from many different perspectives, describing, at length, the pros and cons of FT-ICR and Orbitrap. Numerous examples help researchers decide which instruments to use for their particular scientific problem and which data analysis methods should be applied to get the most out of their data. - Covers FT-ICR-MS and Orbitrap's fundamentals, enhancing researcher knowledge - Includes details on ion sources, data processing, chemical analysis and imaging - Provides examples across the wide spectrum of applications, including omics, environmental, chemical, pharmaceutical and food analysis

Advances in Multiphoton Processes and Spectroscopy

Advances in Multiphoton Processes and Spectroscopy PDF Author: S. H. Lin
Publisher: World Scientific
ISBN: 9789810207182
Category : Science
Languages : en
Pages : 324

Get Book Here

Book Description
In view of the rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions, and molecules in chemistry, physics, biology, materials sciences, etc., it is desirable to publish an Advanced Series that contains review papers readable not only by active researchers in these areas, but also by those who are not experts in the field but who intend to enter the field. The present series attempts to serve this purpose. Each review article is written in a self-contained manner by experts in the area so that the readers can grasp the knowledge in the area without too much preparation. This volume will be useful not only to active researchers but also to other scientists in the area of biology, chemistry, materials science, and physics.

THE APPLICABILITY OF RESONANT TWO-PHOTON IONIZATION AND PULSED LASER DESORPTION IN SUPERSONIC BEAM MASS SPECTROMETRY.

THE APPLICABILITY OF RESONANT TWO-PHOTON IONIZATION AND PULSED LASER DESORPTION IN SUPERSONIC BEAM MASS SPECTROMETRY. PDF Author: ROGER DALE TEMBREULL
Publisher:
ISBN:
Category :
Languages : en
Pages : 217

Get Book Here

Book Description
molecule are obtained.

Applications of Picosecond Light Pulses in Laser Ionization Mass Spectrometry

Applications of Picosecond Light Pulses in Laser Ionization Mass Spectrometry PDF Author: Charles William Wilkerson
Publisher:
ISBN:
Category : Laser pulses, Ultrashort
Languages : en
Pages : 418

Get Book Here

Book Description