Author: C. Zwikker
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
The Advanced Geometry of Plane Curves and Their Applications
Author: C. Zwikker
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
The Advanced Geometry of Plane Curves and Their Applications
Author: Cornelis Zwikker
Publisher:
ISBN:
Category : Curves. [from old catalog]
Languages : en
Pages : 299
Book Description
Publisher:
ISBN:
Category : Curves. [from old catalog]
Languages : en
Pages : 299
Book Description
A Catalog of Special Plane Curves
Author: J. Dennis Lawrence
Publisher: Courier Corporation
ISBN: 0486167666
Category : Mathematics
Languages : en
Pages : 244
Book Description
DIVOne of the most beautiful aspects of geometry. Information on general properties, derived curves, geometric and analytic properties of each curve. 89 illus. /div
Publisher: Courier Corporation
ISBN: 0486167666
Category : Mathematics
Languages : en
Pages : 244
Book Description
DIVOne of the most beautiful aspects of geometry. Information on general properties, derived curves, geometric and analytic properties of each curve. 89 illus. /div
Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable
Author: Rida T Farouki
Publisher: Springer Science & Business Media
ISBN: 3540733973
Category : Mathematics
Languages : en
Pages : 725
Book Description
By virtue of their special algebraic structures, Pythagorean-hodograph (PH) curves offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. This book offers a comprehensive and self-contained treatment of the mathematical theory of PH curves, including algorithms for their construction and examples of their practical applications. It emphasizes the interplay of ideas from algebra and geometry and their historical origins and includes many figures, worked examples, and detailed algorithm descriptions.
Publisher: Springer Science & Business Media
ISBN: 3540733973
Category : Mathematics
Languages : en
Pages : 725
Book Description
By virtue of their special algebraic structures, Pythagorean-hodograph (PH) curves offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. This book offers a comprehensive and self-contained treatment of the mathematical theory of PH curves, including algorithms for their construction and examples of their practical applications. It emphasizes the interplay of ideas from algebra and geometry and their historical origins and includes many figures, worked examples, and detailed algorithm descriptions.
Geometry I
Author: Marcel Berger
Publisher: Springer Science & Business Media
ISBN: 3540116583
Category : Mathematics
Languages : en
Pages : 441
Book Description
Volume I of this 2-volume textbook provides a lively and readable presentation of large parts of classical geometry. For each topic the author presents an esthetically pleasing and easily stated theorem - although the proof may be difficult and concealed. The mathematical text is illustrated with figures, open problems and references to modern literature, providing a unified reference to geometry in the full breadth of its subfields and ramifications.
Publisher: Springer Science & Business Media
ISBN: 3540116583
Category : Mathematics
Languages : en
Pages : 441
Book Description
Volume I of this 2-volume textbook provides a lively and readable presentation of large parts of classical geometry. For each topic the author presents an esthetically pleasing and easily stated theorem - although the proof may be difficult and concealed. The mathematical text is illustrated with figures, open problems and references to modern literature, providing a unified reference to geometry in the full breadth of its subfields and ramifications.
Geometry II
Author: Marcel Berger
Publisher: Springer Science & Business Media
ISBN: 3540170154
Category : Mathematics
Languages : en
Pages : 416
Book Description
This is the second of a two-volume textbook that provides a very readable and lively presentation of large parts of geometry in the classical sense. For each topic the author presents a theorem that is esthetically pleasing and easily stated, although the proof may be quite hard and concealed. Yet another strong trait of the book is that it provides a comprehensive and unified reference source for the field of geometry in the full breadth of its subfields and ramifications.
Publisher: Springer Science & Business Media
ISBN: 3540170154
Category : Mathematics
Languages : en
Pages : 416
Book Description
This is the second of a two-volume textbook that provides a very readable and lively presentation of large parts of geometry in the classical sense. For each topic the author presents a theorem that is esthetically pleasing and easily stated, although the proof may be quite hard and concealed. Yet another strong trait of the book is that it provides a comprehensive and unified reference source for the field of geometry in the full breadth of its subfields and ramifications.
Geometric Methods in Physics XXXIX
Author: Piotr Kielanowski
Publisher: Springer Nature
ISBN: 3031302842
Category : Science
Languages : en
Pages : 345
Book Description
This volume collects papers based on lectures given at the XXXIX Workshop on Geometric Methods in Physics, held in Białystok, Poland in June 2022. These chapters provide readers an overview of cutting-edge research in geometry, analysis, and a wide variety of other areas. Specific topics include: Classical and quantum field theories Infinite-dimensional groups Integrable systems Lie groupoids and Lie algebroids Representation theory Geometric Methods in Physics XXXIX will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas.
Publisher: Springer Nature
ISBN: 3031302842
Category : Science
Languages : en
Pages : 345
Book Description
This volume collects papers based on lectures given at the XXXIX Workshop on Geometric Methods in Physics, held in Białystok, Poland in June 2022. These chapters provide readers an overview of cutting-edge research in geometry, analysis, and a wide variety of other areas. Specific topics include: Classical and quantum field theories Infinite-dimensional groups Integrable systems Lie groupoids and Lie algebroids Representation theory Geometric Methods in Physics XXXIX will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas.
Geometric Methods in Physics XL
Author: Piotr Kielanowski
Publisher: Springer Nature
ISBN: 3031624076
Category : Geometry
Languages : en
Pages : 466
Book Description
Zusammenfassung: This volume collects papers based on lectures given at the XL Workshop on Geometric Methods in Physics, held in Białowieża, Poland in July 2023. These chapters provide readers an overview of cutting-edge research in infinite-dimensional groups, integrable systems, quantum groups, Lie algebras and their generalizations and a wide variety of other areas. Specific topics include: Yang-Baxter equation The restricted Siegel disc and restricted Grassmannian Geometric and deformation quantization Degenerate integrability Lie algebroids and groupoids Skew braces Geometric Methods in Physics XL will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas
Publisher: Springer Nature
ISBN: 3031624076
Category : Geometry
Languages : en
Pages : 466
Book Description
Zusammenfassung: This volume collects papers based on lectures given at the XL Workshop on Geometric Methods in Physics, held in Białowieża, Poland in July 2023. These chapters provide readers an overview of cutting-edge research in infinite-dimensional groups, integrable systems, quantum groups, Lie algebras and their generalizations and a wide variety of other areas. Specific topics include: Yang-Baxter equation The restricted Siegel disc and restricted Grassmannian Geometric and deformation quantization Degenerate integrability Lie algebroids and groupoids Skew braces Geometric Methods in Physics XL will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas
Theoretical Kinematics
Author: O. Bottema
Publisher: Courier Corporation
ISBN: 0486663469
Category : Science
Languages : en
Pages : 594
Book Description
Classic, comprehensive treatment covers Euclidean displacements; instantaneous kinematics; two-position, three-position, four-and-more position theory; special motions; multiparameter motions; kinematics in other geometries; and special mathematical methods.
Publisher: Courier Corporation
ISBN: 0486663469
Category : Science
Languages : en
Pages : 594
Book Description
Classic, comprehensive treatment covers Euclidean displacements; instantaneous kinematics; two-position, three-position, four-and-more position theory; special motions; multiparameter motions; kinematics in other geometries; and special mathematical methods.
Classical Geometry
Author: I. E. Leonard
Publisher: John Wiley & Sons
ISBN: 1118679199
Category : Mathematics
Languages : en
Pages : 501
Book Description
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.
Publisher: John Wiley & Sons
ISBN: 1118679199
Category : Mathematics
Languages : en
Pages : 501
Book Description
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.