Author: Boris N. Khoromskij
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311036591X
Category : Mathematics
Languages : en
Pages : 382
Book Description
The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations
Tensor Numerical Methods in Scientific Computing
Author: Boris N. Khoromskij
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311036591X
Category : Mathematics
Languages : en
Pages : 382
Book Description
The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311036591X
Category : Mathematics
Languages : en
Pages : 382
Book Description
The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations
Tensor Numerical Methods in Quantum Chemistry
Author: Venera Khoromskaia
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110391376
Category : Mathematics
Languages : en
Pages : 343
Book Description
The conventional numerical methods when applied to multidimensional problems suffer from the so-called "curse of dimensionality", that cannot be eliminated by using parallel architectures and high performance computing. The novel tensor numerical methods are based on a "smart" rank-structured tensor representation of the multivariate functions and operators discretized on Cartesian grids thus reducing solution of the multidimensional integral-differential equations to 1D calculations. We explain basic tensor formats and algorithms and show how the orthogonal Tucker tensor decomposition originating from chemometrics made a revolution in numerical analysis, relying on rigorous results from approximation theory. Benefits of tensor approach are demonstrated in ab-initio electronic structure calculations. Computation of the 3D convolution integrals for functions with multiple singularities is replaced by a sequence of 1D operations, thus enabling accurate MATLAB calculations on a laptop using 3D uniform tensor grids of the size up to 1015. Fast tensor-based Hartree-Fock solver, incorporating the grid-based low-rank factorization of the two-electron integrals, serves as a prerequisite for economical calculation of the excitation energies of molecules. Tensor approach suggests efficient grid-based numerical treatment of the long-range electrostatic potentials on large 3D finite lattices with defects.The novel range-separated tensor format applies to interaction potentials of multi-particle systems of general type opening the new prospects for tensor methods in scientific computing. This research monograph presenting the modern tensor techniques applied to problems in quantum chemistry may be interesting for a wide audience of students and scientists working in computational chemistry, material science and scientific computing.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110391376
Category : Mathematics
Languages : en
Pages : 343
Book Description
The conventional numerical methods when applied to multidimensional problems suffer from the so-called "curse of dimensionality", that cannot be eliminated by using parallel architectures and high performance computing. The novel tensor numerical methods are based on a "smart" rank-structured tensor representation of the multivariate functions and operators discretized on Cartesian grids thus reducing solution of the multidimensional integral-differential equations to 1D calculations. We explain basic tensor formats and algorithms and show how the orthogonal Tucker tensor decomposition originating from chemometrics made a revolution in numerical analysis, relying on rigorous results from approximation theory. Benefits of tensor approach are demonstrated in ab-initio electronic structure calculations. Computation of the 3D convolution integrals for functions with multiple singularities is replaced by a sequence of 1D operations, thus enabling accurate MATLAB calculations on a laptop using 3D uniform tensor grids of the size up to 1015. Fast tensor-based Hartree-Fock solver, incorporating the grid-based low-rank factorization of the two-electron integrals, serves as a prerequisite for economical calculation of the excitation energies of molecules. Tensor approach suggests efficient grid-based numerical treatment of the long-range electrostatic potentials on large 3D finite lattices with defects.The novel range-separated tensor format applies to interaction potentials of multi-particle systems of general type opening the new prospects for tensor methods in scientific computing. This research monograph presenting the modern tensor techniques applied to problems in quantum chemistry may be interesting for a wide audience of students and scientists working in computational chemistry, material science and scientific computing.
High-Performance Tensor Computations in Scientific Computing and Data Science
Author: Edoardo Angelo Di Napoli
Publisher: Frontiers Media SA
ISBN: 2832504256
Category : Science
Languages : en
Pages : 192
Book Description
Publisher: Frontiers Media SA
ISBN: 2832504256
Category : Science
Languages : en
Pages : 192
Book Description
Numerical Methods in Matrix Computations
Author: Åke Björck
Publisher: Springer
ISBN: 3319050893
Category : Mathematics
Languages : en
Pages : 812
Book Description
Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.
Publisher: Springer
ISBN: 3319050893
Category : Mathematics
Languages : en
Pages : 812
Book Description
Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.
Numerical Algorithms
Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
High-Performance Scientific Computing
Author: Michael W. Berry
Publisher: Springer Science & Business Media
ISBN: 1447124375
Category : Computers
Languages : en
Pages : 351
Book Description
This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.
Publisher: Springer Science & Business Media
ISBN: 1447124375
Category : Computers
Languages : en
Pages : 351
Book Description
This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.
Python Programming and Numerical Methods
Author: Qingkai Kong
Publisher: Academic Press
ISBN: 0128195509
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online
Publisher: Academic Press
ISBN: 0128195509
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online
High-Performance Computing of Big Data for Turbulence and Combustion
Author: Sergio Pirozzoli
Publisher: Springer
ISBN: 3030170128
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.
Publisher: Springer
ISBN: 3030170128
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.
The Robust Multigrid Technique
Author: Sergey I. Martynenko
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110539268
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book presents a detailed description of a robust pseudomultigrid algorithm for solving (initial-)boundary value problems on structured grids in a black-box manner. To overcome the problem of robustness, the presented Robust Multigrid Technique (RMT) is based on the application of the essential multigrid principle in a single grid algorithm. It results in an extremely simple, very robust and highly parallel solver with close-to-optimal algorithmic complexity and the least number of problem-dependent components. Topics covered include an introduction to the mathematical principles of multigrid methods, a detailed description of RMT, results of convergence analysis and complexity, possible expansion on unstructured grids, numerical experiments and a brief description of multigrid software, parallel RMT and estimations of speed-up and efficiency of the parallel multigrid algorithms, and finally applications of RMT for the numerical solution of the incompressible Navier Stokes equations. Potential readers are graduate students and researchers working in applied and numerical mathematics as well as multigrid practitioners and software programmers. Contents Introduction to multigrid Robust multigrid technique Parallel multigrid methods Applications of multigrid methods in computational fluid dynamics
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110539268
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book presents a detailed description of a robust pseudomultigrid algorithm for solving (initial-)boundary value problems on structured grids in a black-box manner. To overcome the problem of robustness, the presented Robust Multigrid Technique (RMT) is based on the application of the essential multigrid principle in a single grid algorithm. It results in an extremely simple, very robust and highly parallel solver with close-to-optimal algorithmic complexity and the least number of problem-dependent components. Topics covered include an introduction to the mathematical principles of multigrid methods, a detailed description of RMT, results of convergence analysis and complexity, possible expansion on unstructured grids, numerical experiments and a brief description of multigrid software, parallel RMT and estimations of speed-up and efficiency of the parallel multigrid algorithms, and finally applications of RMT for the numerical solution of the incompressible Navier Stokes equations. Potential readers are graduate students and researchers working in applied and numerical mathematics as well as multigrid practitioners and software programmers. Contents Introduction to multigrid Robust multigrid technique Parallel multigrid methods Applications of multigrid methods in computational fluid dynamics
Curves and Surfaces
Author: Jean-Daniel Boissonnat
Publisher: Springer
ISBN: 3319228048
Category : Computers
Languages : en
Pages : 502
Book Description
This volume constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Curves and Surfaces, held in Paris, France, in June 2014. The conference had the overall theme: "Representation and Approximation of Curves and Surfaces and Applications". The 32 revised full papers presented were carefully reviewed and selected from 39 submissions. The scope of the conference was on following topics: approximation theory, computer-aided geometric design, computer graphics and visualization, computational geometry and topology, geometry processing, image and signal processing, interpolation and smoothing, mesh generation, finite elements and splines, scattered data processing and learning theory, sparse and high-dimensional approximation, subdivision, wavelets and multi-resolution method.
Publisher: Springer
ISBN: 3319228048
Category : Computers
Languages : en
Pages : 502
Book Description
This volume constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Curves and Surfaces, held in Paris, France, in June 2014. The conference had the overall theme: "Representation and Approximation of Curves and Surfaces and Applications". The 32 revised full papers presented were carefully reviewed and selected from 39 submissions. The scope of the conference was on following topics: approximation theory, computer-aided geometric design, computer graphics and visualization, computational geometry and topology, geometry processing, image and signal processing, interpolation and smoothing, mesh generation, finite elements and splines, scattered data processing and learning theory, sparse and high-dimensional approximation, subdivision, wavelets and multi-resolution method.