Author: Norman Herr
Publisher: John Wiley & Sons
ISBN: 0787972983
Category : Education
Languages : en
Pages : 614
Book Description
The Sourcebook for Teaching Science is a unique, comprehensive resource designed to give middle and high school science teachers a wealth of information that will enhance any science curriculum. Filled with innovative tools, dynamic activities, and practical lesson plans that are grounded in theory, research, and national standards, the book offers both new and experienced science teachers powerful strategies and original ideas that will enhance the teaching of physics, chemistry, biology, and the earth and space sciences.
The Sourcebook for Teaching Science, Grades 6-12
Author: Norman Herr
Publisher: John Wiley & Sons
ISBN: 0787972983
Category : Education
Languages : en
Pages : 614
Book Description
The Sourcebook for Teaching Science is a unique, comprehensive resource designed to give middle and high school science teachers a wealth of information that will enhance any science curriculum. Filled with innovative tools, dynamic activities, and practical lesson plans that are grounded in theory, research, and national standards, the book offers both new and experienced science teachers powerful strategies and original ideas that will enhance the teaching of physics, chemistry, biology, and the earth and space sciences.
Publisher: John Wiley & Sons
ISBN: 0787972983
Category : Education
Languages : en
Pages : 614
Book Description
The Sourcebook for Teaching Science is a unique, comprehensive resource designed to give middle and high school science teachers a wealth of information that will enhance any science curriculum. Filled with innovative tools, dynamic activities, and practical lesson plans that are grounded in theory, research, and national standards, the book offers both new and experienced science teachers powerful strategies and original ideas that will enhance the teaching of physics, chemistry, biology, and the earth and space sciences.
Hands-On Physics Activities with Real-Life Applications
Author: James Cunningham
Publisher: John Wiley & Sons
ISBN: 087628845X
Category : Education
Languages : en
Pages : 678
Book Description
This comprehensive collection of nearly 200 investigations, demonstrations, mini-labs, and other activities uses everyday examples to make physics concepts easy to understand. For quick access, materials are organized into eight units covering Measurement, Motion, Force, Pressure, Energy & Momentum, Waves, Light, and Electromagnetism. Each lesson contains an introduction with common knowledge examples, reproducible pages for students, a "To the Teacher" information section, and a listing of additional applications students can relate to. Over 300 illustrations add interest and supplement instruction.
Publisher: John Wiley & Sons
ISBN: 087628845X
Category : Education
Languages : en
Pages : 678
Book Description
This comprehensive collection of nearly 200 investigations, demonstrations, mini-labs, and other activities uses everyday examples to make physics concepts easy to understand. For quick access, materials are organized into eight units covering Measurement, Motion, Force, Pressure, Energy & Momentum, Waves, Light, and Electromagnetism. Each lesson contains an introduction with common knowledge examples, reproducible pages for students, a "To the Teacher" information section, and a listing of additional applications students can relate to. Over 300 illustrations add interest and supplement instruction.
Science Teachers' Learning
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309380189
Category : Education
Languages : en
Pages : 257
Book Description
Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.
Publisher: National Academies Press
ISBN: 0309380189
Category : Education
Languages : en
Pages : 257
Book Description
Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.
Teaching the Nature of Science Through Process Skills
Author: Randy L. Bell
Publisher: Allyn & Bacon
ISBN:
Category : Education
Languages : en
Pages : 292
Book Description
Engage your students with inquiry-based lessons that help them think like scientists! "[This] book...has made such a difference in my teaching of science this school year. I have had some of the most amazing science lessons and activities with my students and I attribute this to what I learned from...[this] book... I have watched my 5th grade students go from being casual observers in science to making some amazing observations that I even missed. We enjoy our class investigations and the students ask for more!" --Alyce F. Surmann, Sembach Middle School "Teachers will relate well to the author's personal stories and specific examples given in the text, especially the ones about events in his own classroom.... like having the grasshoppers escape into the classroom!" --Andrea S. Martine, Director of Curriculum and Instruction, Warrior Run School District With Teaching the Nature of Science through Process Skills, author and science educator Randy Bell uses process skills you'll recognize, such as inference and observation, to promote an understanding of the characteristics of science knowledge. His personal stories, taken from years of teaching, set the stage for a friendly narrative that illuminates these characteristics of scientific knowledge and provides step-by-step guidance for implementing inquiry activities that help children understand such important, yet abstract, concepts. With Randy as your guide, you can better adhere to current science education standards that urge teachers to go beyond teaching science content to teach children about the practice and the nature of science in a way that engages all learners in grades three through eight. Investigate further... More than 50 ideas and activities for teaching the nature of science to help you meet content standards. A comprehensive framework to guide you in integrating the approach across the science curriculum, throughout the school year, and across the grade levels. A goldmine of reproducible resources, such as work sheets, notebook assignments, and more. Assessment guidance that helps you measure your students' nature of science understanding.
Publisher: Allyn & Bacon
ISBN:
Category : Education
Languages : en
Pages : 292
Book Description
Engage your students with inquiry-based lessons that help them think like scientists! "[This] book...has made such a difference in my teaching of science this school year. I have had some of the most amazing science lessons and activities with my students and I attribute this to what I learned from...[this] book... I have watched my 5th grade students go from being casual observers in science to making some amazing observations that I even missed. We enjoy our class investigations and the students ask for more!" --Alyce F. Surmann, Sembach Middle School "Teachers will relate well to the author's personal stories and specific examples given in the text, especially the ones about events in his own classroom.... like having the grasshoppers escape into the classroom!" --Andrea S. Martine, Director of Curriculum and Instruction, Warrior Run School District With Teaching the Nature of Science through Process Skills, author and science educator Randy Bell uses process skills you'll recognize, such as inference and observation, to promote an understanding of the characteristics of science knowledge. His personal stories, taken from years of teaching, set the stage for a friendly narrative that illuminates these characteristics of scientific knowledge and provides step-by-step guidance for implementing inquiry activities that help children understand such important, yet abstract, concepts. With Randy as your guide, you can better adhere to current science education standards that urge teachers to go beyond teaching science content to teach children about the practice and the nature of science in a way that engages all learners in grades three through eight. Investigate further... More than 50 ideas and activities for teaching the nature of science to help you meet content standards. A comprehensive framework to guide you in integrating the approach across the science curriculum, throughout the school year, and across the grade levels. A goldmine of reproducible resources, such as work sheets, notebook assignments, and more. Assessment guidance that helps you measure your students' nature of science understanding.
Taking Science to School
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404
Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404
Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
A Framework for K-12 Science Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Inquiry-based Science Education
Author: Robyn M. Gillies
Publisher: CRC Press
ISBN: 1000036316
Category : Education
Languages : en
Pages : 92
Book Description
Students often think of science as disconnected pieces of information rather than a narrative that challenges their thinking, requires them to develop evidence-based explanations for the phenomena under investigation, and communicate their ideas in discipline-specific language as to why certain solutions to a problem work. The author provides teachers in primary and junior secondary school with different evidence-based strategies they can use to teach inquiry science in their classrooms. The research and theoretical perspectives that underpin the strategies are discussed as are examples of how different ones areimplemented in science classrooms to affect student engagement and learning. Key Features: Presents processes involved in teaching inquiry-based science Discusses importance of multi-modal representations in teaching inquiry based-science Covers ways to develop scientifically literacy Uses the Structure of Observed learning Outcomes (SOLO) Taxonomy to assess student reasoning, problem-solving and learning Presents ways to promote scientific discourse, including teacher-student interactions, student-student interactions, and meta-cognitive thinking
Publisher: CRC Press
ISBN: 1000036316
Category : Education
Languages : en
Pages : 92
Book Description
Students often think of science as disconnected pieces of information rather than a narrative that challenges their thinking, requires them to develop evidence-based explanations for the phenomena under investigation, and communicate their ideas in discipline-specific language as to why certain solutions to a problem work. The author provides teachers in primary and junior secondary school with different evidence-based strategies they can use to teach inquiry science in their classrooms. The research and theoretical perspectives that underpin the strategies are discussed as are examples of how different ones areimplemented in science classrooms to affect student engagement and learning. Key Features: Presents processes involved in teaching inquiry-based science Discusses importance of multi-modal representations in teaching inquiry based-science Covers ways to develop scientifically literacy Uses the Structure of Observed learning Outcomes (SOLO) Taxonomy to assess student reasoning, problem-solving and learning Presents ways to promote scientific discourse, including teacher-student interactions, student-student interactions, and meta-cognitive thinking
Hands-On Chemistry Activities with Real-Life Applications
Author: Norman Herr
Publisher: Jossey-Bass
ISBN: 9780876282625
Category : Education
Languages : en
Pages : 654
Book Description
This comprehensive collection of over 300 intriguing investigations-including demonstrations, labs, and other activities-- uses everyday examples to make chemistry concepts easy to understand. It is part of the two-volume PHYSICAL SCIENCE CURRICULUM LIBRARY, which consists of Hands-On Physics Activities With Real-Life Applications and Hands-On Chemistry Activities With Real-Life Applications.
Publisher: Jossey-Bass
ISBN: 9780876282625
Category : Education
Languages : en
Pages : 654
Book Description
This comprehensive collection of over 300 intriguing investigations-including demonstrations, labs, and other activities-- uses everyday examples to make chemistry concepts easy to understand. It is part of the two-volume PHYSICAL SCIENCE CURRICULUM LIBRARY, which consists of Hands-On Physics Activities With Real-Life Applications and Hands-On Chemistry Activities With Real-Life Applications.
Teaching Science Process Skills
Author: Jill Bailer
Publisher:
ISBN: 9780768231861
Category : Education
Languages : en
Pages : 0
Book Description
Your students will be engaged with these high-interest inquiry-based experiments that will help develop important science process skills such as observing, hypothesizing, predicting, inferring, and investigating. Teacher notes are included for every activity as well as forms and guidelines for independent lab investigations. This invaluable book for middle school students hones in on skills necessary for achieving desired results on standardized tests and Project 2061 science initiatives. Excite your students and your science curriculum withTeaching Science Process Skills.
Publisher:
ISBN: 9780768231861
Category : Education
Languages : en
Pages : 0
Book Description
Your students will be engaged with these high-interest inquiry-based experiments that will help develop important science process skills such as observing, hypothesizing, predicting, inferring, and investigating. Teacher notes are included for every activity as well as forms and guidelines for independent lab investigations. This invaluable book for middle school students hones in on skills necessary for achieving desired results on standardized tests and Project 2061 science initiatives. Excite your students and your science curriculum withTeaching Science Process Skills.
Make It Stick
Author: Peter C. Brown
Publisher: Harvard University Press
ISBN: 0674729013
Category : Psychology
Languages : en
Pages : 330
Book Description
To most of us, learning something "the hard way" implies wasted time and effort. Good teaching, we believe, should be creatively tailored to the different learning styles of students and should use strategies that make learning easier. Make It Stick turns fashionable ideas like these on their head. Drawing on recent discoveries in cognitive psychology and other disciplines, the authors offer concrete techniques for becoming more productive learners. Memory plays a central role in our ability to carry out complex cognitive tasks, such as applying knowledge to problems never before encountered and drawing inferences from facts already known. New insights into how memory is encoded, consolidated, and later retrieved have led to a better understanding of how we learn. Grappling with the impediments that make learning challenging leads both to more complex mastery and better retention of what was learned. Many common study habits and practice routines turn out to be counterproductive. Underlining and highlighting, rereading, cramming, and single-minded repetition of new skills create the illusion of mastery, but gains fade quickly. More complex and durable learning come from self-testing, introducing certain difficulties in practice, waiting to re-study new material until a little forgetting has set in, and interleaving the practice of one skill or topic with another. Speaking most urgently to students, teachers, trainers, and athletes, Make It Stick will appeal to all those interested in the challenge of lifelong learning and self-improvement.
Publisher: Harvard University Press
ISBN: 0674729013
Category : Psychology
Languages : en
Pages : 330
Book Description
To most of us, learning something "the hard way" implies wasted time and effort. Good teaching, we believe, should be creatively tailored to the different learning styles of students and should use strategies that make learning easier. Make It Stick turns fashionable ideas like these on their head. Drawing on recent discoveries in cognitive psychology and other disciplines, the authors offer concrete techniques for becoming more productive learners. Memory plays a central role in our ability to carry out complex cognitive tasks, such as applying knowledge to problems never before encountered and drawing inferences from facts already known. New insights into how memory is encoded, consolidated, and later retrieved have led to a better understanding of how we learn. Grappling with the impediments that make learning challenging leads both to more complex mastery and better retention of what was learned. Many common study habits and practice routines turn out to be counterproductive. Underlining and highlighting, rereading, cramming, and single-minded repetition of new skills create the illusion of mastery, but gains fade quickly. More complex and durable learning come from self-testing, introducing certain difficulties in practice, waiting to re-study new material until a little forgetting has set in, and interleaving the practice of one skill or topic with another. Speaking most urgently to students, teachers, trainers, and athletes, Make It Stick will appeal to all those interested in the challenge of lifelong learning and self-improvement.