Taylor Approximations for Stochastic Partial Differential Equations

Taylor Approximations for Stochastic Partial Differential Equations PDF Author: Arnulf Jentzen
Publisher: SIAM
ISBN: 9781611972016
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.

Taylor Approximations for Stochastic Partial Differential Equations

Taylor Approximations for Stochastic Partial Differential Equations PDF Author: Arnulf Jentzen
Publisher: SIAM
ISBN: 9781611972016
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations PDF Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666

Get Book Here

Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Numerical Analysis of Partial Differential Equations Using Maple and MATLAB

Numerical Analysis of Partial Differential Equations Using Maple and MATLAB PDF Author: Martin J. Gander
Publisher: SIAM
ISBN: 161197531X
Category : Science
Languages : en
Pages : 163

Get Book Here

Book Description
This book provides an elementary yet comprehensive introduction to the numerical solution of partial differential equations (PDEs). Used to model important phenomena, such as the heating of apartments and the behavior of electromagnetic waves, these equations have applications in engineering and the life sciences, and most can only be solved approximately using computers.? Numerical Analysis of Partial Differential Equations Using Maple and MATLAB provides detailed descriptions of the four major classes of discretization methods for PDEs (finite difference method, finite volume method, spectral method, and finite element method) and runnable MATLAB? code for each of the discretization methods and exercises. It also gives self-contained convergence proofs for each method using the tools and techniques required for the general convergence analysis but adapted to the simplest setting to keep the presentation clear and complete. This book is intended for advanced undergraduate and early graduate students in numerical analysis and scientific computing and researchers in related fields. It is appropriate for a course on numerical methods for partial differential equations.

A Minicourse on Stochastic Partial Differential Equations

A Minicourse on Stochastic Partial Differential Equations PDF Author: Robert C. Dalang
Publisher: Springer Science & Business Media
ISBN: 3540859934
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.

Numerical Methods for Stochastic Partial Differential Equations with White Noise

Numerical Methods for Stochastic Partial Differential Equations with White Noise PDF Author: Zhongqiang Zhang
Publisher: Springer
ISBN: 3319575112
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.

An Introduction to Computational Stochastic PDEs

An Introduction to Computational Stochastic PDEs PDF Author: Gabriel J. Lord
Publisher: Cambridge University Press
ISBN: 1139915770
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB® codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.

Stochastic Partial Differential Equations

Stochastic Partial Differential Equations PDF Author: Sergey V. Lototsky
Publisher: Springer
ISBN: 3319586475
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.

Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients

Numerical Approximations of Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients PDF Author: Martin Hutzenthaler
Publisher: American Mathematical Soc.
ISBN: 1470409844
Category : Mathematics
Languages : en
Pages : 112

Get Book Here

Book Description
Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation methods which require only a few more arithmetical operations than the Euler-Maruyama method. These moment bounds are then used to prove strong convergence of the proposed schemes. Finally, the authors illustrate their results for several SDEs from finance, physics, biology and chemistry.

Time Parallel Time Integration

Time Parallel Time Integration PDF Author: Martin J. Gander
Publisher: SIAM
ISBN: 1611978025
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Predicting the future is a difficult task but, as with the weather, it is possible with good models. But how does one predict the far future before the near future is known? Time parallel time integration, also known as PinT (Parallel-in-Time) methods, aims to predict the near and far future simultaneously. In this self-contained book, the first on the topic, readers will find a comprehensive and up-to-date description of methods and techniques that have been developed to do just this. The authors describe the four main classes of PinT methods: shooting-type methods, waveform relaxation methods, time parallel multigrid methods, and direct time parallel methods. In addition, they provide historical background for each of the method classes, complete convergence analyses for the most representative variants of the methods in each class, and illustrations and runnable MATLAB code. An ideal introduction to this exciting and very active research field, Time Parallel Time Integration can be used for independent study or for a graduate course.