Author: Mohd. Tashfeen Ashraf
Publisher: Elsevier
ISBN: 0323958915
Category : Science
Languages : en
Pages : 317
Book Description
System Biology Approaches for Microbial Pathogenesis Interaction Analysis aids biological researchers to expand their research scope using piled up data generated through recent technological advancement. In addition, it also opens avenues for bioinformatics and computer science researchers to utilize their expertise in biological meaningful ways. It also covers network biology approaches to decipher complex multiple host-pathogen interactions in addition to giving valuable coverage of artificial intelligence. The host-pathogen interactions are generally considered as highly specific interactions leading to a variety of consequences. The utilization of data science approaches has revolutionized scientific research including host-pathogen interaction analyses. Data science approaches coupled with network biology has taken host-pathogen interaction analysis from specific interaction to a new paradigm of understanding consequences of these interaction in the biological network. Unfortunately, basic biological researchers are mostly unaware of these advancements. In contrast, data scientists are not familiar with biological aspects of such data. System Biology Approaches for Microbial Pathogenesis Interaction Analysis will bridge these gaps through a new paradigm of understanding consequences of interaction in biological networks. • Cover approaches to decipher complex multiple host–pathogen interactions• Gives biological researcher an insight into the utilization of technological advancements in the field of host–pathogen interaction analyses in their work• Provides a new paradigm of understanding the consequences of host–pathogen interaction in biological systems
Systems Biology Approaches for Host-Pathogen Interaction Analysis
Author: Mohd. Tashfeen Ashraf
Publisher: Elsevier
ISBN: 0323958915
Category : Science
Languages : en
Pages : 317
Book Description
System Biology Approaches for Microbial Pathogenesis Interaction Analysis aids biological researchers to expand their research scope using piled up data generated through recent technological advancement. In addition, it also opens avenues for bioinformatics and computer science researchers to utilize their expertise in biological meaningful ways. It also covers network biology approaches to decipher complex multiple host-pathogen interactions in addition to giving valuable coverage of artificial intelligence. The host-pathogen interactions are generally considered as highly specific interactions leading to a variety of consequences. The utilization of data science approaches has revolutionized scientific research including host-pathogen interaction analyses. Data science approaches coupled with network biology has taken host-pathogen interaction analysis from specific interaction to a new paradigm of understanding consequences of these interaction in the biological network. Unfortunately, basic biological researchers are mostly unaware of these advancements. In contrast, data scientists are not familiar with biological aspects of such data. System Biology Approaches for Microbial Pathogenesis Interaction Analysis will bridge these gaps through a new paradigm of understanding consequences of interaction in biological networks. • Cover approaches to decipher complex multiple host–pathogen interactions• Gives biological researcher an insight into the utilization of technological advancements in the field of host–pathogen interaction analyses in their work• Provides a new paradigm of understanding the consequences of host–pathogen interaction in biological systems
Publisher: Elsevier
ISBN: 0323958915
Category : Science
Languages : en
Pages : 317
Book Description
System Biology Approaches for Microbial Pathogenesis Interaction Analysis aids biological researchers to expand their research scope using piled up data generated through recent technological advancement. In addition, it also opens avenues for bioinformatics and computer science researchers to utilize their expertise in biological meaningful ways. It also covers network biology approaches to decipher complex multiple host-pathogen interactions in addition to giving valuable coverage of artificial intelligence. The host-pathogen interactions are generally considered as highly specific interactions leading to a variety of consequences. The utilization of data science approaches has revolutionized scientific research including host-pathogen interaction analyses. Data science approaches coupled with network biology has taken host-pathogen interaction analysis from specific interaction to a new paradigm of understanding consequences of these interaction in the biological network. Unfortunately, basic biological researchers are mostly unaware of these advancements. In contrast, data scientists are not familiar with biological aspects of such data. System Biology Approaches for Microbial Pathogenesis Interaction Analysis will bridge these gaps through a new paradigm of understanding consequences of interaction in biological networks. • Cover approaches to decipher complex multiple host–pathogen interactions• Gives biological researcher an insight into the utilization of technological advancements in the field of host–pathogen interaction analyses in their work• Provides a new paradigm of understanding the consequences of host–pathogen interaction in biological systems
Applications of RNA-Seq in Biology and Medicine
Author: Irina Vlasova-St. Louis
Publisher: BoD – Books on Demand
ISBN: 1839626860
Category : Science
Languages : en
Pages : 144
Book Description
This book evaluates and comprehensively summarizes the scientific findings that have been achieved through RNA-sequencing (RNA-Seq) technology. RNA-Seq transcriptome profiling of healthy and diseased tissues allows FOR understanding the alterations in cellular phenotypes through the expression of differentially spliced RNA isoforms. Assessment of gene expression by RNA-Seq provides new insight into host response to pathogens, drugs, allergens, and other environmental triggers. RNA-Seq allows us to accurately capture all subtypes of RNA molecules, in any sequenced organism or single-cell type, under different experimental conditions. Merging genomics and transcriptomic profiling provides novel information underlying causative DNA mutations. Combining RNA-Seq with immunoprecipitation and cross-linking techniques is a clever multi-omics strategy assessing transcriptional, post-transcriptional and post-translational levels of gene expression regulation.
Publisher: BoD – Books on Demand
ISBN: 1839626860
Category : Science
Languages : en
Pages : 144
Book Description
This book evaluates and comprehensively summarizes the scientific findings that have been achieved through RNA-sequencing (RNA-Seq) technology. RNA-Seq transcriptome profiling of healthy and diseased tissues allows FOR understanding the alterations in cellular phenotypes through the expression of differentially spliced RNA isoforms. Assessment of gene expression by RNA-Seq provides new insight into host response to pathogens, drugs, allergens, and other environmental triggers. RNA-Seq allows us to accurately capture all subtypes of RNA molecules, in any sequenced organism or single-cell type, under different experimental conditions. Merging genomics and transcriptomic profiling provides novel information underlying causative DNA mutations. Combining RNA-Seq with immunoprecipitation and cross-linking techniques is a clever multi-omics strategy assessing transcriptional, post-transcriptional and post-translational levels of gene expression regulation.
Computational Systems Biology of Pathogen-Host Interactions
Author: Saliha Durmuş
Publisher: Frontiers Media SA
ISBN: 2889198219
Category : Microbiology
Languages : en
Pages : 200
Book Description
A thorough understanding of pathogenic microorganisms and their interactions with host organisms is crucial to prevent infectious threats due to the fact that Pathogen-Host Interactions (PHIs) have critical roles in initiating and sustaining infections. Therefore, the analysis of infection mechanisms through PHIs is indispensable to identify diagnostic biomarkers and next-generation drug targets and then to develop strategic novel solutions against drug-resistance and for personalized therapy. Traditional approaches are limited in capturing mechanisms of infection since they investigate hosts or pathogens individually. On the other hand, the systems biology approach focuses on the whole PHI system, and is more promising in capturing infection mechanisms. Here, we bring together studies on the below listed sections to present the current picture of the research on Computational Systems Biology of Pathogen-Host Interactions: - Computational Inference of PHI Networks using Omics Data - Computational Prediction of PHIs - Text Mining of PHI Data from the Literature - Mathematical Modeling and Bioinformatic Analysis of PHIs Computational Inference of PHI Networks using Omics Data Gene regulatory, metabolic and protein-protein networks of PHI systems are crucial for a thorough understanding of infection mechanisms. Great advances in molecular biology and biotechnology have allowed the production of related omics data experimentally. Many computational methods are emerging to infer molecular interaction networks of PHI systems from the corresponding omics data. Computational Prediction of PHIs Due to the lack of experimentally-found PHI data, many computational methods have been developed for the prediction of pathogen-host protein-protein interactions. Despite being emerging, currently available experimental PHI data are far from complete for a systems view of infection mechanisms through PHIs. Therefore, computational methods are the main tools to predict new PHIs. To this end, the development of new computational methods is of great interest. Text Mining of PHI Data from Literature Despite the recent development of many PHI-specific databases, most data relevant to PHIs are still buried in the biomedical literature, which demands for the use of text mining techniques to unravel PHIs hidden in the literature. Only some rare efforts have been performed to achieve this aim. Therefore, the development of novel text mining methods specific for PHI data retrieval is of key importance for efficient use of the available literature. Mathematical Modeling and Bioinformatic Analysis of PHIs After the reconstruction of PHI networks experimentally and/or computationally, their mathematical modeling and detailed computational analysis is required using bioinformatics tools to get insights on infection mechanisms. Bioinformatics methods are increasingly applied to analyze the increasing amount of experimentally-found and computationally-predicted PHI data.
Publisher: Frontiers Media SA
ISBN: 2889198219
Category : Microbiology
Languages : en
Pages : 200
Book Description
A thorough understanding of pathogenic microorganisms and their interactions with host organisms is crucial to prevent infectious threats due to the fact that Pathogen-Host Interactions (PHIs) have critical roles in initiating and sustaining infections. Therefore, the analysis of infection mechanisms through PHIs is indispensable to identify diagnostic biomarkers and next-generation drug targets and then to develop strategic novel solutions against drug-resistance and for personalized therapy. Traditional approaches are limited in capturing mechanisms of infection since they investigate hosts or pathogens individually. On the other hand, the systems biology approach focuses on the whole PHI system, and is more promising in capturing infection mechanisms. Here, we bring together studies on the below listed sections to present the current picture of the research on Computational Systems Biology of Pathogen-Host Interactions: - Computational Inference of PHI Networks using Omics Data - Computational Prediction of PHIs - Text Mining of PHI Data from the Literature - Mathematical Modeling and Bioinformatic Analysis of PHIs Computational Inference of PHI Networks using Omics Data Gene regulatory, metabolic and protein-protein networks of PHI systems are crucial for a thorough understanding of infection mechanisms. Great advances in molecular biology and biotechnology have allowed the production of related omics data experimentally. Many computational methods are emerging to infer molecular interaction networks of PHI systems from the corresponding omics data. Computational Prediction of PHIs Due to the lack of experimentally-found PHI data, many computational methods have been developed for the prediction of pathogen-host protein-protein interactions. Despite being emerging, currently available experimental PHI data are far from complete for a systems view of infection mechanisms through PHIs. Therefore, computational methods are the main tools to predict new PHIs. To this end, the development of new computational methods is of great interest. Text Mining of PHI Data from Literature Despite the recent development of many PHI-specific databases, most data relevant to PHIs are still buried in the biomedical literature, which demands for the use of text mining techniques to unravel PHIs hidden in the literature. Only some rare efforts have been performed to achieve this aim. Therefore, the development of novel text mining methods specific for PHI data retrieval is of key importance for efficient use of the available literature. Mathematical Modeling and Bioinformatic Analysis of PHIs After the reconstruction of PHI networks experimentally and/or computationally, their mathematical modeling and detailed computational analysis is required using bioinformatics tools to get insights on infection mechanisms. Bioinformatics methods are increasingly applied to analyze the increasing amount of experimentally-found and computationally-predicted PHI data.
Fungal Diseases in Animals
Author: Arti Gupta
Publisher: Springer Nature
ISBN: 3030695077
Category : Science
Languages : en
Pages : 201
Book Description
The importance of fungal infections in both human and animals has increased over the last few decades. This book presents an overview of the different categories of fungal infections that can be encountered in animals (including lower vertebrates) originating from environmental sources with or without transmission to humans. In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed. This book includes case studies and reviews the current state of knowledge on the mechanism of fungal attraction, recognition, infection, extracellular hydrolytic enzymes and pathogenesis of nematophagous fungi. The book also covers diagnostics, fungal formulations, as well as prevention methods. It discusses strategies to access the fungal pathogen groups, metagenomic analyses, genomics, secretomics, metabolomics, proteomics and transcriptomics. In addition, pathogen description, understanding, distribution and recent research results are provided.
Publisher: Springer Nature
ISBN: 3030695077
Category : Science
Languages : en
Pages : 201
Book Description
The importance of fungal infections in both human and animals has increased over the last few decades. This book presents an overview of the different categories of fungal infections that can be encountered in animals (including lower vertebrates) originating from environmental sources with or without transmission to humans. In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed. This book includes case studies and reviews the current state of knowledge on the mechanism of fungal attraction, recognition, infection, extracellular hydrolytic enzymes and pathogenesis of nematophagous fungi. The book also covers diagnostics, fungal formulations, as well as prevention methods. It discusses strategies to access the fungal pathogen groups, metagenomic analyses, genomics, secretomics, metabolomics, proteomics and transcriptomics. In addition, pathogen description, understanding, distribution and recent research results are provided.
Molecular Mechanisms of Neurodegenerative Diseases
Author: Marie-Francoise Chesselet
Publisher: Springer Science & Business Media
ISBN: 1592590063
Category : Medical
Languages : en
Pages : 416
Book Description
With the unprecedented identification of new mutation mechanisms in neurodegenerative diseases and the emergence of common mechanisms among diseases that were once considered unrelated, neurobiologists are poised for the development of new therapies based on high throughput screenings and a better understanding of the molecular and cellular mechanisms leading to neurodegeneration. In Molecular Mechanisms of Neurodegenerative Diseases, Marie-Francoise Chesselet, MD, PhD, and a panel of leading researchers and neurologists from industry and academia critically review the most recent advances from different yet complementary points of view. Focusing on Alzheimer's, Parkinson's, and CAG triplet repeat diseases, the authors show how studies of cellular and genetically engineered animal models have enhanced our understanding of the molecular mechanisms of neurodegenerative diseases and may lead to the development of new therapeutics. Topics include the role of Ab toxicity, glial cells, and inflammation in Alzheimer's disease; the formation of abnormal protein fragments across several diseases, the impact of dopamine and mitochondrial dysfunction on neurodegeneration; and the potential of genetics to identify the molecular mechanisms of neurodegenerative diseases. Authoritative and insightful, Molecular Mechanisms of Neurodegenerative Diseases synthesizes the novel ideas and concepts now emerging to create a fresh understanding of neurodegenerative disorders, one that promises to lead to powerful new therapies that prevent, delay the onset, slow the progression, or even cure these cruel diseases.
Publisher: Springer Science & Business Media
ISBN: 1592590063
Category : Medical
Languages : en
Pages : 416
Book Description
With the unprecedented identification of new mutation mechanisms in neurodegenerative diseases and the emergence of common mechanisms among diseases that were once considered unrelated, neurobiologists are poised for the development of new therapies based on high throughput screenings and a better understanding of the molecular and cellular mechanisms leading to neurodegeneration. In Molecular Mechanisms of Neurodegenerative Diseases, Marie-Francoise Chesselet, MD, PhD, and a panel of leading researchers and neurologists from industry and academia critically review the most recent advances from different yet complementary points of view. Focusing on Alzheimer's, Parkinson's, and CAG triplet repeat diseases, the authors show how studies of cellular and genetically engineered animal models have enhanced our understanding of the molecular mechanisms of neurodegenerative diseases and may lead to the development of new therapeutics. Topics include the role of Ab toxicity, glial cells, and inflammation in Alzheimer's disease; the formation of abnormal protein fragments across several diseases, the impact of dopamine and mitochondrial dysfunction on neurodegeneration; and the potential of genetics to identify the molecular mechanisms of neurodegenerative diseases. Authoritative and insightful, Molecular Mechanisms of Neurodegenerative Diseases synthesizes the novel ideas and concepts now emerging to create a fresh understanding of neurodegenerative disorders, one that promises to lead to powerful new therapies that prevent, delay the onset, slow the progression, or even cure these cruel diseases.
Handbook of Statistical Systems Biology
Author: Michael Stumpf
Publisher: John Wiley & Sons
ISBN: 1119952042
Category : Science
Languages : en
Pages : 624
Book Description
Systems Biology is now entering a mature phase in which the key issues are characterising uncertainty and stochastic effects in mathematical models of biological systems. The area is moving towards a full statistical analysis and probabilistic reasoning over the inferences that can be made from mathematical models. This handbook presents a comprehensive guide to the discipline for practitioners and educators, in providing a full and detailed treatment of these important and emerging subjects. Leading experts in systems biology and statistics have come together to provide insight in to the major ideas in the field, and in particular methods of specifying and fitting models, and estimating the unknown parameters. This book: Provides a comprehensive account of inference techniques in systems biology. Introduces classical and Bayesian statistical methods for complex systems. Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems. Discusses various applications for statistical systems biology, such as gene regulation and signal transduction. Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies. Presents an in-depth presentation of reverse engineering approaches. Provides colour illustrations to explain key concepts. This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field.
Publisher: John Wiley & Sons
ISBN: 1119952042
Category : Science
Languages : en
Pages : 624
Book Description
Systems Biology is now entering a mature phase in which the key issues are characterising uncertainty and stochastic effects in mathematical models of biological systems. The area is moving towards a full statistical analysis and probabilistic reasoning over the inferences that can be made from mathematical models. This handbook presents a comprehensive guide to the discipline for practitioners and educators, in providing a full and detailed treatment of these important and emerging subjects. Leading experts in systems biology and statistics have come together to provide insight in to the major ideas in the field, and in particular methods of specifying and fitting models, and estimating the unknown parameters. This book: Provides a comprehensive account of inference techniques in systems biology. Introduces classical and Bayesian statistical methods for complex systems. Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems. Discusses various applications for statistical systems biology, such as gene regulation and signal transduction. Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies. Presents an in-depth presentation of reverse engineering approaches. Provides colour illustrations to explain key concepts. This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field.
Wildlife Disease Ecology
Author: Kenneth Wilson
Publisher: Cambridge University Press
ISBN: 1107136563
Category : Language Arts & Disciplines
Languages : en
Pages : 693
Book Description
Introduces readers to key case studies that illustrate how theory and data can be integrated to understand wildlife disease ecology.
Publisher: Cambridge University Press
ISBN: 1107136563
Category : Language Arts & Disciplines
Languages : en
Pages : 693
Book Description
Introduces readers to key case studies that illustrate how theory and data can be integrated to understand wildlife disease ecology.
Translational Systems Biology: Concepts and Practice for the Future of Biomedical Research
Author: Yoram Vodovotz
Publisher: Academic Press
ISBN: 9780128101476
Category : Computers
Languages : en
Pages : 178
Book Description
Are we satisfied with the rate of drug development? Are we happy with the drugs that come to market? Are we getting our money s worth in spending for basic biomedical research? In Translational Systems Biology, Drs. Yoram Vodovotz and Gary An address these questions by providing a foundational description the barriers facing biomedical research today and the immediate future, and how these barriers could be overcome through the adoption of a robust and scalable approach that will form the underpinning of biomedical research for the future. By using a combination of essays providing the intellectual basis of the Translational Dilemma and reports of examples in the study of inflammation, the content of Translational Systems Biology will remain relevant as technology and knowledge advances bring broad translational applicability to other diseases. Translational systems biology is an integrated, multi-scale, evidence-based approach that combines laboratory, clinical and computational methods with an explicit goal of developing effective means of control of biological processes for improving human health and rapid clinical application. This comprehensive approach to date has been utilized for in silico studies of sepsis, trauma, hemorrhage, and traumatic brain injury, acute liver failure, wound healing, and inflammation. Provides an explicit, reasoned, and systematic approach to dealing with the challenges of translational science across disciplines Establishes the case for including computational modeling at all stages of biomedical research and healthcare delivery, from early pre-clinical studies to long-term care, by clearly delineating efficiency and costs saving important to business investment Guides readers on how to communicate across domains and disciplines, particularly between biologists and computational researchers, to effectively develop multi- and trans-disciplinary research teams "
Publisher: Academic Press
ISBN: 9780128101476
Category : Computers
Languages : en
Pages : 178
Book Description
Are we satisfied with the rate of drug development? Are we happy with the drugs that come to market? Are we getting our money s worth in spending for basic biomedical research? In Translational Systems Biology, Drs. Yoram Vodovotz and Gary An address these questions by providing a foundational description the barriers facing biomedical research today and the immediate future, and how these barriers could be overcome through the adoption of a robust and scalable approach that will form the underpinning of biomedical research for the future. By using a combination of essays providing the intellectual basis of the Translational Dilemma and reports of examples in the study of inflammation, the content of Translational Systems Biology will remain relevant as technology and knowledge advances bring broad translational applicability to other diseases. Translational systems biology is an integrated, multi-scale, evidence-based approach that combines laboratory, clinical and computational methods with an explicit goal of developing effective means of control of biological processes for improving human health and rapid clinical application. This comprehensive approach to date has been utilized for in silico studies of sepsis, trauma, hemorrhage, and traumatic brain injury, acute liver failure, wound healing, and inflammation. Provides an explicit, reasoned, and systematic approach to dealing with the challenges of translational science across disciplines Establishes the case for including computational modeling at all stages of biomedical research and healthcare delivery, from early pre-clinical studies to long-term care, by clearly delineating efficiency and costs saving important to business investment Guides readers on how to communicate across domains and disciplines, particularly between biologists and computational researchers, to effectively develop multi- and trans-disciplinary research teams "
Bacterial Evasion of Host Immune Responses
Author: Brian Henderson
Publisher: Cambridge University Press
ISBN: 9780521801737
Category : Medical
Languages : en
Pages : 332
Book Description
Our survival as multicellular organisms requires the constant surveillance of our internal and external (mucosal) environments by the multifarious elements of the innate and acquired systems of immunity. The objective of this surveillance, expensive as it is to the organisms, is to recognise and kill invading microorganisms. Over the past fifty years the cells and mediators involved in our immune defences have been painstakingly identified. However, it is only relatively recently that the ability of microorganisms to evade immunity has been recognised and investigated. Bacterial Evasion of Host Immune Responses introduces the reader to the mechanisms used by bacteria to evade both humoral and cellular immune responses, using systems ranging in complexity from the simple quorum sensing molecules - acyl homoserine lactones - to the supramolecular syringe-like devices of type III secretion systems. This book will be of interest to researchers and graduate students in microbiology, immunology, pharmacology and molecular medicine.
Publisher: Cambridge University Press
ISBN: 9780521801737
Category : Medical
Languages : en
Pages : 332
Book Description
Our survival as multicellular organisms requires the constant surveillance of our internal and external (mucosal) environments by the multifarious elements of the innate and acquired systems of immunity. The objective of this surveillance, expensive as it is to the organisms, is to recognise and kill invading microorganisms. Over the past fifty years the cells and mediators involved in our immune defences have been painstakingly identified. However, it is only relatively recently that the ability of microorganisms to evade immunity has been recognised and investigated. Bacterial Evasion of Host Immune Responses introduces the reader to the mechanisms used by bacteria to evade both humoral and cellular immune responses, using systems ranging in complexity from the simple quorum sensing molecules - acyl homoserine lactones - to the supramolecular syringe-like devices of type III secretion systems. This book will be of interest to researchers and graduate students in microbiology, immunology, pharmacology and molecular medicine.
Microbial Interventions in Agriculture and Environment
Author: Dhananjaya Pratap Singh
Publisher: Springer Nature
ISBN: 9813290846
Category : Technology & Engineering
Languages : en
Pages : 491
Book Description
Microbial communities and their multi-functionalities play a crucial role in the management of soil and plant health, and thus help in managing agro-ecology, the environment and agriculture. Microorganisms are key players in N-fixation, nutrient acquisition, carbon sequestration, plant growth promotion, pathogen suppression, induced systemic resistance and tolerance against stresses, and these parameters are used as indicators of improved crop productivity and sustainable soil health. Beneficial belowground microbial interactions in the rhizosphere help plants combat abiotic challenges in the unfavourable environmental conditions of native soils. These microorganisms and their products offer potential solutions for agriculture in problematic areas since they are able to degrade xenobiotic compounds, pesticides and toxic chemicals and help remediate heavy metals in the rhizosphere and so make deteriorated soils suitable for crop production. This book compiles the latest research on the role of microbes in the rhizosphere and agro-ecology, covering interaction mechanisms, microbe-mediated crop production, plant and soil health management, food and nutrition, nutrient recycling, land reclamation, clean water systems, agro-waste management, biodegradation, bioremediation, biomass and bioenergy, sanitation and rural livelihood security. It is a comprehensive reference resource for agricultural activists, policymakers, environmentalists and advisors working for governments, non-governmental organizations and industries, helping them update their knowledge of this important, but often neglected, research area.
Publisher: Springer Nature
ISBN: 9813290846
Category : Technology & Engineering
Languages : en
Pages : 491
Book Description
Microbial communities and their multi-functionalities play a crucial role in the management of soil and plant health, and thus help in managing agro-ecology, the environment and agriculture. Microorganisms are key players in N-fixation, nutrient acquisition, carbon sequestration, plant growth promotion, pathogen suppression, induced systemic resistance and tolerance against stresses, and these parameters are used as indicators of improved crop productivity and sustainable soil health. Beneficial belowground microbial interactions in the rhizosphere help plants combat abiotic challenges in the unfavourable environmental conditions of native soils. These microorganisms and their products offer potential solutions for agriculture in problematic areas since they are able to degrade xenobiotic compounds, pesticides and toxic chemicals and help remediate heavy metals in the rhizosphere and so make deteriorated soils suitable for crop production. This book compiles the latest research on the role of microbes in the rhizosphere and agro-ecology, covering interaction mechanisms, microbe-mediated crop production, plant and soil health management, food and nutrition, nutrient recycling, land reclamation, clean water systems, agro-waste management, biodegradation, bioremediation, biomass and bioenergy, sanitation and rural livelihood security. It is a comprehensive reference resource for agricultural activists, policymakers, environmentalists and advisors working for governments, non-governmental organizations and industries, helping them update their knowledge of this important, but often neglected, research area.