Author: Oliver Brand
Publisher: John Wiley & Sons
ISBN: 3527647120
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.
System-level Modeling of MEMS
Author: Oliver Brand
Publisher: John Wiley & Sons
ISBN: 3527647120
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.
Publisher: John Wiley & Sons
ISBN: 3527647120
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.
Modeling MEMS and NEMS
Author: John A. Pelesko
Publisher: CRC Press
ISBN: 1420035290
Category : Mathematics
Languages : en
Pages : 382
Book Description
Designing small structures necessitates an a priori understanding of various device behaviors. The way to gain such understanding is to construct, analyze, and interpret the proper mathematical model. Through such models, Modeling MEMS and NEMS illuminates microscale and nanoscale phenomena, thereby facilitating the design and optimization o
Publisher: CRC Press
ISBN: 1420035290
Category : Mathematics
Languages : en
Pages : 382
Book Description
Designing small structures necessitates an a priori understanding of various device behaviors. The way to gain such understanding is to construct, analyze, and interpret the proper mathematical model. Through such models, Modeling MEMS and NEMS illuminates microscale and nanoscale phenomena, thereby facilitating the design and optimization o
Optimal Synthesis Methods for MEMS
Author: S.G.K. Ananthasuresh
Publisher: Springer Science & Business Media
ISBN: 1461504872
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
The field of "microelectromechanical systems," or "MEMS," has gradually evolved from a "discipline" populated by a small group of researchers to an "enabling technology" supporting a variety of products in such diverse areas as mechanical and inertial sensors, optical projection displays, telecommunications equipment, and biology and medicine. Critical to the success of these products is the ability to design them, and this invariably involves detailed modeling of proposed designs. Over the past twenty years, such modeling has become increasingly sophisticated, with full suites of MEMS-oriented computer-aided-design tools now available worldwide. But there is another equally important side to the design process In my own book, Microsystem figuring out what to build in the first place. Design, I chose to emphasize the modeling aspect of design. The task of figuring out what to build was defined by a vague step called "creative thinking." I used practical product examples to illustrate the many subtle characteristics of successful designs, but I made no attempt to systematize the generation ofdesign proposals or optimized designs. That systemization is called "synthesis," which is the subjectofthis book.
Publisher: Springer Science & Business Media
ISBN: 1461504872
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
The field of "microelectromechanical systems," or "MEMS," has gradually evolved from a "discipline" populated by a small group of researchers to an "enabling technology" supporting a variety of products in such diverse areas as mechanical and inertial sensors, optical projection displays, telecommunications equipment, and biology and medicine. Critical to the success of these products is the ability to design them, and this invariably involves detailed modeling of proposed designs. Over the past twenty years, such modeling has become increasingly sophisticated, with full suites of MEMS-oriented computer-aided-design tools now available worldwide. But there is another equally important side to the design process In my own book, Microsystem figuring out what to build in the first place. Design, I chose to emphasize the modeling aspect of design. The task of figuring out what to build was defined by a vague step called "creative thinking." I used practical product examples to illustrate the many subtle characteristics of successful designs, but I made no attempt to systematize the generation ofdesign proposals or optimized designs. That systemization is called "synthesis," which is the subjectofthis book.
MEMS: Field Models and Optimal Design
Author: Paolo Di Barba
Publisher: Springer
ISBN: 3030214966
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This book highlights numerical models as powerful tools for the optimal design of Micro-Electro-Mechanical Systems (MEMS). Most MEMS experts have a background in electronics, where circuit models or behavioral models (i.e. lumped-parameter models) of devices are preferred to field models. This is certainly convenient in terms of preliminary design, e.g. in the prototyping stage. However, design optimization should also take into account fine-sizing effects on device behavior and therefore be based on distributed-parameter models, such as finite-element models. The book shows how the combination of automated optimal design and field-based models can produce powerful design toolboxes for MEMS. It especially focuses on illustrating theoretical concepts with practical examples, fostering comprehension through a problem-solving approach. By comparing the results obtained using different methods, readers will learn to identify their respective strengths and weaknesses. In addition, special emphasis is given to evolutionary computing and nature-inspired optimization strategies, the effectiveness of which has already been amply demonstrated. Given its scope, the book provides PhD students, researchers and professionals in the area of computer-aided analysis with a comprehensive, yet concise and practice-oriented guide to MEMS design and optimization. To benefit most from the book, readers should have a basic grasp of electromagnetism, vector analysis and numerical methods.
Publisher: Springer
ISBN: 3030214966
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This book highlights numerical models as powerful tools for the optimal design of Micro-Electro-Mechanical Systems (MEMS). Most MEMS experts have a background in electronics, where circuit models or behavioral models (i.e. lumped-parameter models) of devices are preferred to field models. This is certainly convenient in terms of preliminary design, e.g. in the prototyping stage. However, design optimization should also take into account fine-sizing effects on device behavior and therefore be based on distributed-parameter models, such as finite-element models. The book shows how the combination of automated optimal design and field-based models can produce powerful design toolboxes for MEMS. It especially focuses on illustrating theoretical concepts with practical examples, fostering comprehension through a problem-solving approach. By comparing the results obtained using different methods, readers will learn to identify their respective strengths and weaknesses. In addition, special emphasis is given to evolutionary computing and nature-inspired optimization strategies, the effectiveness of which has already been amply demonstrated. Given its scope, the book provides PhD students, researchers and professionals in the area of computer-aided analysis with a comprehensive, yet concise and practice-oriented guide to MEMS design and optimization. To benefit most from the book, readers should have a basic grasp of electromagnetism, vector analysis and numerical methods.
Handbook of Silicon Based MEMS Materials and Technologies
Author: Markku Tilli
Publisher: Elsevier
ISBN: 0815519885
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: - Silicon as MEMS material - Material properties and measurement techniques - Analytical methods used in materials characterization - Modeling in MEMS - Measuring MEMS - Micromachining technologies in MEMS - Encapsulation of MEMS components - Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. - Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. - Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. - Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. - Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. - Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques - Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs - Discusses properties, preparation, and growth of silicon crystals and wafers - Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures
Publisher: Elsevier
ISBN: 0815519885
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: - Silicon as MEMS material - Material properties and measurement techniques - Analytical methods used in materials characterization - Modeling in MEMS - Measuring MEMS - Micromachining technologies in MEMS - Encapsulation of MEMS components - Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. - Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. - Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. - Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. - Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. - Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques - Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs - Discusses properties, preparation, and growth of silicon crystals and wafers - Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures
MEMS-based Circuits and Systems for Wireless Communication
Author: Christian C Enz
Publisher: Springer Science & Business Media
ISBN: 1441987983
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
MEMS-based Circuits and Systems for Wireless Communications provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead. This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on design of electronic circuits incorporating MEMS. Circuit design techniques specific to MEMS resonators are applied to oscillators and active filters. In Part III contributors discuss how MEMS can advantageously be used in radios to increase their miniaturization and reduce their power consumption. RF systems built around MEMS components such as MEMS-based frequency synthesis including all-digital PLLs, ultra-low power MEMS-based communication systems and a MEMS-based automotive wireless sensor node are described.
Publisher: Springer Science & Business Media
ISBN: 1441987983
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
MEMS-based Circuits and Systems for Wireless Communications provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead. This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on design of electronic circuits incorporating MEMS. Circuit design techniques specific to MEMS resonators are applied to oscillators and active filters. In Part III contributors discuss how MEMS can advantageously be used in radios to increase their miniaturization and reduce their power consumption. RF systems built around MEMS components such as MEMS-based frequency synthesis including all-digital PLLs, ultra-low power MEMS-based communication systems and a MEMS-based automotive wireless sensor node are described.
RF MEMS Switches and Integrated Switching Circuits
Author: Ai-Qun Liu
Publisher: Springer Science & Business Media
ISBN: 0387462627
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Microelectromechanical Systems (MEMS) stand poised for the next major breakthrough in the silicon revolution that began with the transistor in the 1960s and has revolutionized microelectronics. MEMS allow one to not only observe and process information of all types from small scale systems, but also to affect changes in systems and the environment at that scale. “RF MEMS Switches and Integrated Switching Circuits” builds on the extensive body of literature that exists in research papers on analytical and numerical modeling and design based on RF MEMS switches and micromachined switching circuits, and presents a unified framework of coverage. This volume includes, but is not limited to, RF MEMS approaches, developments from RF MEMS switches to RF switching circuits, and MEMS switch components in circuit systems. This book also: -Presents RF Switches and switching circuit MEMS devices in a unified framework covering all aspects of engineering innovation, design, modeling, fabrication, control and experimental implementation -Discusses RF switch devices in detail, with both system and component-level circuit integration using micro- and nano-fabrication techniques -Includes an emphasis on design innovation and experimental relevance rather than basic electromagnetic theory and device physics “RF MEMS Switches and Integrated Switching Circuits” is perfect for engineers, researchers and students working in the fields of MEMS, circuits and systems and RFs.
Publisher: Springer Science & Business Media
ISBN: 0387462627
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Microelectromechanical Systems (MEMS) stand poised for the next major breakthrough in the silicon revolution that began with the transistor in the 1960s and has revolutionized microelectronics. MEMS allow one to not only observe and process information of all types from small scale systems, but also to affect changes in systems and the environment at that scale. “RF MEMS Switches and Integrated Switching Circuits” builds on the extensive body of literature that exists in research papers on analytical and numerical modeling and design based on RF MEMS switches and micromachined switching circuits, and presents a unified framework of coverage. This volume includes, but is not limited to, RF MEMS approaches, developments from RF MEMS switches to RF switching circuits, and MEMS switch components in circuit systems. This book also: -Presents RF Switches and switching circuit MEMS devices in a unified framework covering all aspects of engineering innovation, design, modeling, fabrication, control and experimental implementation -Discusses RF switch devices in detail, with both system and component-level circuit integration using micro- and nano-fabrication techniques -Includes an emphasis on design innovation and experimental relevance rather than basic electromagnetic theory and device physics “RF MEMS Switches and Integrated Switching Circuits” is perfect for engineers, researchers and students working in the fields of MEMS, circuits and systems and RFs.
Analysis and Design Principles of MEMS Devices
Author: Minhang Bao
Publisher: Elsevier
ISBN: 008045562X
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field.* Presents the analysis and design principles of MEMS devices more systematically than ever before.* Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures* A problem section is included at the end of each chapter with answers provided at the end of the book.
Publisher: Elsevier
ISBN: 008045562X
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field.* Presents the analysis and design principles of MEMS devices more systematically than ever before.* Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures* A problem section is included at the end of each chapter with answers provided at the end of the book.
Computational Nanotechnology
Author: Sarhan M. Musa
Publisher: CRC Press
ISBN: 1439841772
Category : Science
Languages : en
Pages : 526
Book Description
Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required to achieve a more robust quantitative understanding of matter at the nanoscale. Computational Nanotechnology: Modeling and Applications with MATLAB® provides expert insights into current and emerging methods, opportunities, and challenges associated with the computational techniques involved in nanoscale research. Written by, and for, those working in the interdisciplinary fields that comprise nanotechnology—including engineering, physics, chemistry, biology, and medicine—this book covers a broad spectrum of technical information, research ideas, and practical knowledge. It presents an introduction to computational methods in nanotechnology, including a closer look at the theory and modeling of two important nanoscale systems: molecular magnets and semiconductor quantum dots. Topics covered include: Modeling of nanoparticles and complex nano and MEMS systems Theory associated with micromagnetics Surface modeling of thin films Computational techniques used to validate hypotheses that may not be accessible through traditional experimentation Simulation methods for various nanotubes and modeling of carbon nanotube and silicon nanowire transistors In regard to applications of computational nanotechnology in biology, contributors describe tracking of nanoscale structures in cells, effects of various forces on cellular behavior, and use of protein-coated gold nanoparticles to better understand protein-associated nanomaterials. Emphasizing the importance of MATLAB for biological simulations in nanomedicine, this wide-ranging survey of computational nanotechnology concludes by discussing future directions in the field, highlighting the importance of the algorithms, modeling software, and computational tools in the development of efficient nanoscale systems.
Publisher: CRC Press
ISBN: 1439841772
Category : Science
Languages : en
Pages : 526
Book Description
Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required to achieve a more robust quantitative understanding of matter at the nanoscale. Computational Nanotechnology: Modeling and Applications with MATLAB® provides expert insights into current and emerging methods, opportunities, and challenges associated with the computational techniques involved in nanoscale research. Written by, and for, those working in the interdisciplinary fields that comprise nanotechnology—including engineering, physics, chemistry, biology, and medicine—this book covers a broad spectrum of technical information, research ideas, and practical knowledge. It presents an introduction to computational methods in nanotechnology, including a closer look at the theory and modeling of two important nanoscale systems: molecular magnets and semiconductor quantum dots. Topics covered include: Modeling of nanoparticles and complex nano and MEMS systems Theory associated with micromagnetics Surface modeling of thin films Computational techniques used to validate hypotheses that may not be accessible through traditional experimentation Simulation methods for various nanotubes and modeling of carbon nanotube and silicon nanowire transistors In regard to applications of computational nanotechnology in biology, contributors describe tracking of nanoscale structures in cells, effects of various forces on cellular behavior, and use of protein-coated gold nanoparticles to better understand protein-associated nanomaterials. Emphasizing the importance of MATLAB for biological simulations in nanomedicine, this wide-ranging survey of computational nanotechnology concludes by discussing future directions in the field, highlighting the importance of the algorithms, modeling software, and computational tools in the development of efficient nanoscale systems.
Applications
Author: Peter Benner
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110499002
Category : Mathematics
Languages : en
Pages : 474
Book Description
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110499002
Category : Mathematics
Languages : en
Pages : 474
Book Description
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.