Author: John H. Reif
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 1032
Book Description
Mathematics of Computing -- Parallelism.
Synthesis of Parallel Algorithms
Author: John H. Reif
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 1032
Book Description
Mathematics of Computing -- Parallelism.
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 1032
Book Description
Mathematics of Computing -- Parallelism.
Parallel Algorithms
Author: Sandeep Nautam Bhatt
Publisher: American Mathematical Soc.
ISBN: 9780821870754
Category : Computers
Languages : en
Pages : 184
Book Description
This volume is the result of the Third DIMACS Implementation Challenge that was conducted as part of the 1993-94 Special year on Parallel Algorithms. The Implementation Challenge was formulated in order to provide a forum for a concerted effort to study effective algorithms for combinatorial problems and to investigate opportunities for massive speed-ups on parallel computers. The challenge invluded two problem areas for research study: tree searching, algorithms, used in game search and combinatorial optimization, for example, and algorithms for sparse graphs. Participants at sites in the US and Europe undertook projects from November 1993 through October 1994. The workshop was held at DIMACS in November 1994. Participants were encouraged to share test results, to rework their implementations considering feedback at the workshop, and to submit a final report for the proceedings. Nine papers were selected for this volume.
Publisher: American Mathematical Soc.
ISBN: 9780821870754
Category : Computers
Languages : en
Pages : 184
Book Description
This volume is the result of the Third DIMACS Implementation Challenge that was conducted as part of the 1993-94 Special year on Parallel Algorithms. The Implementation Challenge was formulated in order to provide a forum for a concerted effort to study effective algorithms for combinatorial problems and to investigate opportunities for massive speed-ups on parallel computers. The challenge invluded two problem areas for research study: tree searching, algorithms, used in game search and combinatorial optimization, for example, and algorithms for sparse graphs. Participants at sites in the US and Europe undertook projects from November 1993 through October 1994. The workshop was held at DIMACS in November 1994. Participants were encouraged to share test results, to rework their implementations considering feedback at the workshop, and to submit a final report for the proceedings. Nine papers were selected for this volume.
Concurrency and Parallelism, Programming, Networking, and Security
Author: Joxan Jaffar
Publisher: Springer Science & Business Media
ISBN: 9783540620310
Category : Computers
Languages : en
Pages : 420
Book Description
This book constitutes the refereed proceedings of the Second Asian Conference on Computing Science, ASIAN'96, held in Singapore in December 1996. The volume presents 31 revised full papers selected from a total of 169 submissions; also included are three invited papers and 14 posters. The papers are organized in topical sections on algorithms, constraints and logic programming, distributed systems, formal systems, networking and security, programming and systems, and specification and verification.
Publisher: Springer Science & Business Media
ISBN: 9783540620310
Category : Computers
Languages : en
Pages : 420
Book Description
This book constitutes the refereed proceedings of the Second Asian Conference on Computing Science, ASIAN'96, held in Singapore in December 1996. The volume presents 31 revised full papers selected from a total of 169 submissions; also included are three invited papers and 14 posters. The papers are organized in topical sections on algorithms, constraints and logic programming, distributed systems, formal systems, networking and security, programming and systems, and specification and verification.
Parallel Algorithms in Computational Science and Engineering
Author: Ananth Grama
Publisher: Springer Nature
ISBN: 3030437361
Category : Computers
Languages : en
Pages : 421
Book Description
This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.
Publisher: Springer Nature
ISBN: 3030437361
Category : Computers
Languages : en
Pages : 421
Book Description
This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.
Programming Massively Parallel Processors
Author: David B. Kirk
Publisher: Newnes
ISBN: 0123914183
Category : Computers
Languages : en
Pages : 519
Book Description
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Publisher: Newnes
ISBN: 0123914183
Category : Computers
Languages : en
Pages : 519
Book Description
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Scientific Parallel Computing
Author: L. Ridgway Scott
Publisher: Princeton University Press
ISBN: 0691227659
Category : Computers
Languages : en
Pages : 392
Book Description
What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book
Publisher: Princeton University Press
ISBN: 0691227659
Category : Computers
Languages : en
Pages : 392
Book Description
What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book
Limits to Parallel Computation
Author: Raymond Greenlaw
Publisher: Oxford University Press, USA
ISBN: 0195085914
Category : Computational complexity
Languages : en
Pages : 328
Book Description
This book provides a comprehensive analysis of the most important topics in parallel computation. It is written so that it may be used as a self-study guide to the field, and researchers in parallel computing will find it a useful reference for many years to come. The first half of the book consists of an introduction to many fundamental issues in parallel computing. The second half provides lists of P-complete- and open problems. These lists will have lasting value to researchers in both industry and academia. The lists of problems, with their corresponding remarks, the thorough index, and the hundreds of references add to the exceptional value of this resource. While the exciting field of parallel computation continues to expand rapidly, this book serves as a guide to research done through 1994 and also describes the fundamental concepts that new workers will need to know in coming years. It is intended for anyone interested in parallel computing, including senior level undergraduate students, graduate students, faculty, and people in industry. As an essential reference, the book will be needed in all academic libraries.
Publisher: Oxford University Press, USA
ISBN: 0195085914
Category : Computational complexity
Languages : en
Pages : 328
Book Description
This book provides a comprehensive analysis of the most important topics in parallel computation. It is written so that it may be used as a self-study guide to the field, and researchers in parallel computing will find it a useful reference for many years to come. The first half of the book consists of an introduction to many fundamental issues in parallel computing. The second half provides lists of P-complete- and open problems. These lists will have lasting value to researchers in both industry and academia. The lists of problems, with their corresponding remarks, the thorough index, and the hundreds of references add to the exceptional value of this resource. While the exciting field of parallel computation continues to expand rapidly, this book serves as a guide to research done through 1994 and also describes the fundamental concepts that new workers will need to know in coming years. It is intended for anyone interested in parallel computing, including senior level undergraduate students, graduate students, faculty, and people in industry. As an essential reference, the book will be needed in all academic libraries.
Parallel Metaheuristics
Author: Enrique Alba
Publisher: John Wiley & Sons
ISBN: 0471739375
Category : Technology & Engineering
Languages : en
Pages : 574
Book Description
Solving complex optimization problems with parallel metaheuristics Parallel Metaheuristics brings together an international group of experts in parallelism and metaheuristics to provide a much-needed synthesis of these two fields. Readers discover how metaheuristic techniques can provide useful and practical solutions for a wide range of problems and application domains, with an emphasis on the fields of telecommunications and bioinformatics. This volume fills a long-existing gap, allowing researchers and practitioners to develop efficient metaheuristic algorithms to find solutions. The book is divided into three parts: * Part One: Introduction to Metaheuristics and Parallelism, including an Introduction to Metaheuristic Techniques, Measuring the Performance of Parallel Metaheuristics, New Technologies in Parallelism, and a head-to-head discussion on Metaheuristics and Parallelism * Part Two: Parallel Metaheuristic Models, including Parallel Genetic Algorithms, Parallel Genetic Programming, Parallel Evolution Strategies, Parallel Ant Colony Algorithms, Parallel Estimation of Distribution Algorithms, Parallel Scatter Search, Parallel Variable Neighborhood Search, Parallel Simulated Annealing, Parallel Tabu Search, Parallel GRASP, Parallel Hybrid Metaheuristics, Parallel Multi-Objective Optimization, and Parallel Heterogeneous Metaheuristics * Part Three: Theory and Applications, including Theory of Parallel Genetic Algorithms, Parallel Metaheuristics Applications, Parallel Metaheuristics in Telecommunications, and a final chapter on Bioinformatics and Parallel Metaheuristics Each self-contained chapter begins with clear overviews and introductions that bring the reader up to speed, describes basic techniques, and ends with a reference list for further study. Packed with numerous tables and figures to illustrate the complex theory and processes, this comprehensive volume also includes numerous practical real-world optimization problems and their solutions. This is essential reading for students and researchers in computer science, mathematics, and engineering who deal with parallelism, metaheuristics, and optimization in general.
Publisher: John Wiley & Sons
ISBN: 0471739375
Category : Technology & Engineering
Languages : en
Pages : 574
Book Description
Solving complex optimization problems with parallel metaheuristics Parallel Metaheuristics brings together an international group of experts in parallelism and metaheuristics to provide a much-needed synthesis of these two fields. Readers discover how metaheuristic techniques can provide useful and practical solutions for a wide range of problems and application domains, with an emphasis on the fields of telecommunications and bioinformatics. This volume fills a long-existing gap, allowing researchers and practitioners to develop efficient metaheuristic algorithms to find solutions. The book is divided into three parts: * Part One: Introduction to Metaheuristics and Parallelism, including an Introduction to Metaheuristic Techniques, Measuring the Performance of Parallel Metaheuristics, New Technologies in Parallelism, and a head-to-head discussion on Metaheuristics and Parallelism * Part Two: Parallel Metaheuristic Models, including Parallel Genetic Algorithms, Parallel Genetic Programming, Parallel Evolution Strategies, Parallel Ant Colony Algorithms, Parallel Estimation of Distribution Algorithms, Parallel Scatter Search, Parallel Variable Neighborhood Search, Parallel Simulated Annealing, Parallel Tabu Search, Parallel GRASP, Parallel Hybrid Metaheuristics, Parallel Multi-Objective Optimization, and Parallel Heterogeneous Metaheuristics * Part Three: Theory and Applications, including Theory of Parallel Genetic Algorithms, Parallel Metaheuristics Applications, Parallel Metaheuristics in Telecommunications, and a final chapter on Bioinformatics and Parallel Metaheuristics Each self-contained chapter begins with clear overviews and introductions that bring the reader up to speed, describes basic techniques, and ends with a reference list for further study. Packed with numerous tables and figures to illustrate the complex theory and processes, this comprehensive volume also includes numerous practical real-world optimization problems and their solutions. This is essential reading for students and researchers in computer science, mathematics, and engineering who deal with parallelism, metaheuristics, and optimization in general.
Parallel Algorithms for Numerical Linear Algebra
Author: H. van der Vorst
Publisher: Elsevier
ISBN: 1483295737
Category : Computers
Languages : en
Pages : 341
Book Description
This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for parallel shared-memory systems, and the design of fast algorithms and implementations for vector supercomputers.
Publisher: Elsevier
ISBN: 1483295737
Category : Computers
Languages : en
Pages : 341
Book Description
This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for parallel shared-memory systems, and the design of fast algorithms and implementations for vector supercomputers.
A Parallel Algorithm Synthesis Procedure for High-Performance Computer Architectures
Author: Ian N. Dunn
Publisher: Springer Science & Business Media
ISBN: 9780306477430
Category : Computers
Languages : en
Pages : 124
Book Description
Despite five decades of research, parallel computing remains an exotic, frontier technology on the fringes of mainstream computing. Its much-heralded triumph over sequential computing has yet to materialize. This is in spite of the fact that the processing needs of many signal processing applications continue to eclipse the capabilities of sequential computing. The culprit is largely the software development environment. Fundamental shortcomings in the development environment of many parallel computer architectures thwart the adoption of parallel computing. Foremost, parallel computing has no unifying model to accurately predict the execution time of algorithms on parallel architectures. Cost and scarce programming resources prohibit deploying multiple algorithms and partitioning strategies in an attempt to find the fastest solution. As a consequence, algorithm design is largely an intuitive art form dominated by practitioners who specialize in a particular computer architecture. This, coupled with the fact that parallel computer architectures rarely last more than a couple of years, makes for a complex and challenging design environment. To navigate this environment, algorithm designers need a road map, a detailed procedure they can use to efficiently develop high performance, portable parallel algorithms. The focus of this book is to draw such a road map. The Parallel Algorithm Synthesis Procedure can be used to design reusable building blocks of adaptable, scalable software modules from which high performance signal processing applications can be constructed. The hallmark of the procedure is a semi-systematic process for introducing parameters to control the partitioning and scheduling of computation and communication. This facilitates the tailoring of software modules to exploit different configurations of multiple processors, multiple floating-point units, and hierarchical memories. To showcase the efficacy of this procedure, the book presents three case studies requiring various degrees of optimization for parallel execution. This book can be used as a reference for algorithm designers or as a text for an advanced course on parallel programming.
Publisher: Springer Science & Business Media
ISBN: 9780306477430
Category : Computers
Languages : en
Pages : 124
Book Description
Despite five decades of research, parallel computing remains an exotic, frontier technology on the fringes of mainstream computing. Its much-heralded triumph over sequential computing has yet to materialize. This is in spite of the fact that the processing needs of many signal processing applications continue to eclipse the capabilities of sequential computing. The culprit is largely the software development environment. Fundamental shortcomings in the development environment of many parallel computer architectures thwart the adoption of parallel computing. Foremost, parallel computing has no unifying model to accurately predict the execution time of algorithms on parallel architectures. Cost and scarce programming resources prohibit deploying multiple algorithms and partitioning strategies in an attempt to find the fastest solution. As a consequence, algorithm design is largely an intuitive art form dominated by practitioners who specialize in a particular computer architecture. This, coupled with the fact that parallel computer architectures rarely last more than a couple of years, makes for a complex and challenging design environment. To navigate this environment, algorithm designers need a road map, a detailed procedure they can use to efficiently develop high performance, portable parallel algorithms. The focus of this book is to draw such a road map. The Parallel Algorithm Synthesis Procedure can be used to design reusable building blocks of adaptable, scalable software modules from which high performance signal processing applications can be constructed. The hallmark of the procedure is a semi-systematic process for introducing parameters to control the partitioning and scheduling of computation and communication. This facilitates the tailoring of software modules to exploit different configurations of multiple processors, multiple floating-point units, and hierarchical memories. To showcase the efficacy of this procedure, the book presents three case studies requiring various degrees of optimization for parallel execution. This book can be used as a reference for algorithm designers or as a text for an advanced course on parallel programming.