Synthesis and Properties of Barium Titanate Solid Solution Thin Films on Copper Substrates

Synthesis and Properties of Barium Titanate Solid Solution Thin Films on Copper Substrates PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Barium titanate thin films were deposited via chemical solution deposition using a hybrid-chelate chemistry directly on copper foil substrates. A process was developed to crystallize and densify the ferroelectric films at 900C by using a reductive atmosphere containing nitrogen, hydrogen, water vapor, and oxygen impurities such that film constituents were oxidized to form barium titanate and the foil substrate remained metallic. The crystallized films are polycrystalline with equiaxed morphology and average grain diameters in excess of 100 nm. The dielectric properties exhibit permittivities in excess of 1800 at room temperature and zero bias with tunabilites of greater than 90% and high field loss tangents of less than 1%. A series of samples was prepared with varying grain and crystallite sizes by dividing and processing a single film over a range of temperature from 700 to 900C. This ensures that the chemical composition and film thickness is invariant for each sample. It is shown that the grain size increases with higher process temperatures and results in a concomitant increase in permittivity and tunability. These enhancements, combined with the constant paraelectricD erroelectric phase transition temperature, indicated that a combination of film crystallinity and grain size is responsible for diminished performance. The phase transition temperature and temperature coefficient of capacitance modified by partially substituting zirconium, hafnium, and tin for titanium. The resulting films were single phase and the phase transition shifts were consistent with bulk materials. A reduction in permittivity was observed for increasing substituent level and was attributed to a reduction in grain size for both barium titanate zirconate and barium titanate hafnate. Processing conditions were chosen to stabilize Sn2+ during the firing process in an attempt to flux the system and increase grain size. The barium titanate stannate films had less reduction in grain size.

Synthesis and Properties of Barium Titanate Solid Solution Thin Films on Copper Substrates

Synthesis and Properties of Barium Titanate Solid Solution Thin Films on Copper Substrates PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Barium titanate thin films were deposited via chemical solution deposition using a hybrid-chelate chemistry directly on copper foil substrates. A process was developed to crystallize and densify the ferroelectric films at 900C by using a reductive atmosphere containing nitrogen, hydrogen, water vapor, and oxygen impurities such that film constituents were oxidized to form barium titanate and the foil substrate remained metallic. The crystallized films are polycrystalline with equiaxed morphology and average grain diameters in excess of 100 nm. The dielectric properties exhibit permittivities in excess of 1800 at room temperature and zero bias with tunabilites of greater than 90% and high field loss tangents of less than 1%. A series of samples was prepared with varying grain and crystallite sizes by dividing and processing a single film over a range of temperature from 700 to 900C. This ensures that the chemical composition and film thickness is invariant for each sample. It is shown that the grain size increases with higher process temperatures and results in a concomitant increase in permittivity and tunability. These enhancements, combined with the constant paraelectricD erroelectric phase transition temperature, indicated that a combination of film crystallinity and grain size is responsible for diminished performance. The phase transition temperature and temperature coefficient of capacitance modified by partially substituting zirconium, hafnium, and tin for titanium. The resulting films were single phase and the phase transition shifts were consistent with bulk materials. A reduction in permittivity was observed for increasing substituent level and was attributed to a reduction in grain size for both barium titanate zirconate and barium titanate hafnate. Processing conditions were chosen to stabilize Sn2+ during the firing process in an attempt to flux the system and increase grain size. The barium titanate stannate films had less reduction in grain size.

Synthesis and Properties of Barium Titanate Solid Solution Thin Films on Copper Substrates

Synthesis and Properties of Barium Titanate Solid Solution Thin Films on Copper Substrates PDF Author: Jon Fredrick Ihlefeld
Publisher:
ISBN:
Category :
Languages : en
Pages : 250

Get Book Here

Book Description
Keywords: hafnium, tin, zirconium, flux, copper, equilibria, grain size, size effects, sol-gel, barium titanate, film, ferroelectric, doping.

Synthesis and Characterization of Batio3 Pellets and Thin Films

Synthesis and Characterization of Batio3 Pellets and Thin Films PDF Author: Meor Ahmad Faris Meor Ahmad Tajudin
Publisher:
ISBN:
Category : Barium compounds
Languages : en
Pages : 143

Get Book Here

Book Description
Barium titanate was synthesized using a solid state approach and an aqueous method. Solid state syntheses were used to prepare barium titanate pellets using a powder metallurgy method. Appropriate amounts of barium carbonate and titanium dioxide powder were mixed together in an agate mortar. Barium titanate pellets were mixed according to 5 different ratios of Ba/Ti which are 1:0.9, 1:0.95, 1:1, 1:1.05, 1:1.1. Pellets were sintered in air at a temperature 1400 °C. Barium titanate thin films were prepared using an aqueous method. Sol-gel of barium titanate was prepared according to the similar ratios as pellets. Thin films of barium titanate sol-gel were deposited using a desktop printer onto a glass substrate and fired at 400 °C. Both pellets and thin films were characterized by X-ray diffraction, scanning electron microscope, Atomic Force Microscope (thin films only), and impedance spectroscopy. This thesis focuses on determination of dielectric properties of barium titanate including the resistance, capacitance, dielectric constant, relaxation frequency, and loss tangent. The highest density for the barium titanate pellets were 5.90 g/cm3 when a Ba:Ti ratio of 1:1 was used. The average thicknesses of the thin films were 2.89 nm as measured using the atomic force microscope and verified using the scanning electron microscope. Characteristic of barium titanate were observed under various temperatures starting from room temperature up to 450 °C (for pellets) and 300 °C (for thin films). The measured dielectric constant of the pellets at 10 kHz (at room temperature) varied from a maximum of 2810 to a minimum of 1375.

Ferroelectric Thin Films

Ferroelectric Thin Films PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 330

Get Book Here

Book Description


Intrinsic and Substrate Dependent Properties of Polycrystalline Barium Titanate Thin Films

Intrinsic and Substrate Dependent Properties of Polycrystalline Barium Titanate Thin Films PDF Author: Kenneth Morian Ring
Publisher:
ISBN:
Category :
Languages : en
Pages : 456

Get Book Here

Book Description


Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition

Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition PDF Author: Costas G. Fountzoulas
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
Ferroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba(0.6)Sr(0.4)Ti(1-y)(A(3+), B(5+))(y)O3 thin films, of nominal thickness of 0.65 micrometer, were synthesized initially at substrate temperatures of 400 deg C, and subsequently annealed to 750 deg C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the post-annealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemical abstracts
Languages : en
Pages : 2470

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704

Get Book Here

Book Description


Hydrothermal Synthesis of Barium Titanate Particles and Heteroepitaxial Thin Films

Hydrothermal Synthesis of Barium Titanate Particles and Heteroepitaxial Thin Films PDF Author: Emin Ciftci
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
"The synthesis of ultrafine BaTiO3 particles by a reaction between fine TiO2 particles and a strongly alkaline solution of Ba(OH)2 under hydrothermal conditions was investigated. The influence of the synthesis temperature (80°C to 240°C) and time (1 to 96 hours) on the characteristics of the BaTiO3 powders was investigated by X-ray diffraction, transmission electron microscopy, thermal analysis and atomic emission spectroscopy. The powders were predominantly cubic at lower temperatures (

Processing Science of Barium Titanate

Processing Science of Barium Titanate PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: 1) To improve our fundamental understanding of complex oxide processing science, and 2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400 Ã'°C. After the top electrode deposition, the films were co-fired at 900 Ã'°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400 Ã'°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and.