Symplectic Cobordism and the Computation of Stable Stems

Symplectic Cobordism and the Computation of Stable Stems PDF Author: Stanley O. Kochman
Publisher: American Mathematical Soc.
ISBN: 0821825585
Category : Mathematics
Languages : en
Pages : 105

Get Book Here

Book Description
This memoir consists of two independent papers. In the first, "The symplectic cobordism ring III" the classical Adams spectral sequence is used to study the symplectic cobordism ring [capital Greek]Omega[superscript]* [over] [subscript italic capital]S[subscript italic]p. In the second, "The symplectic Adams Novikov spectral sequence for spheres" we analyze the symplectic Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres.

Symplectic Cobordism and the Computation of Stable Stems

Symplectic Cobordism and the Computation of Stable Stems PDF Author: Stanley O. Kochman
Publisher: American Mathematical Soc.
ISBN: 0821825585
Category : Mathematics
Languages : en
Pages : 105

Get Book Here

Book Description
This memoir consists of two independent papers. In the first, "The symplectic cobordism ring III" the classical Adams spectral sequence is used to study the symplectic cobordism ring [capital Greek]Omega[superscript]* [over] [subscript italic capital]S[subscript italic]p. In the second, "The symplectic Adams Novikov spectral sequence for spheres" we analyze the symplectic Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres.

Manifolds and $K$-Theory

Manifolds and $K$-Theory PDF Author: Gregory Arone
Publisher: American Mathematical Soc.
ISBN: 1470417006
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
This volume contains the proceedings of the conference on Manifolds, -Theory, and Related Topics, held from June 23–27, 2014, in Dubrovnik, Croatia. The articles contained in this volume are a collection of research papers featuring recent advances in homotopy theory, -theory, and their applications to manifolds. Topics covered include homotopy and manifold calculus, structured spectra, and their applications to group theory and the geometry of manifolds. This volume is a tribute to the influence of Tom Goodwillie in these fields.

The Kinematic Formula in Riemannian Homogeneous Spaces

The Kinematic Formula in Riemannian Homogeneous Spaces PDF Author: Ralph Howard
Publisher: American Mathematical Soc.
ISBN: 0821825690
Category : Mathematics
Languages : en
Pages : 82

Get Book Here

Book Description
This memoir investigates a method that generalizes the Chern-Federer kinematic formula to arbitrary homogeneous spaces with an invariant Riemannian metric, and leads to new formulas even in the case of submanifolds of Euclidean space.

An Alpine Bouquet of Algebraic Topology

An Alpine Bouquet of Algebraic Topology PDF Author: Jérôme Scherer
Publisher: American Mathematical Soc.
ISBN: 147042911X
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This volume contains the proceedings of the Alpine Algebraic and Applied Topology Conference, held from August 15–21, 2016, in Saas-Almagell, Switzerland. The papers cover a broad range of topics in modern algebraic topology, including the theory of highly structured ring spectra, infinity-categories and Segal spaces, equivariant homotopy theory, algebraic -theory and topological cyclic, periodic, or Hochschild homology, intersection cohomology, and symplectic topology.

On the Correlation of Multiplicative and the Sum of Additive Arithmetic Functions

On the Correlation of Multiplicative and the Sum of Additive Arithmetic Functions PDF Author: Peter D. T. A. Elliott
Publisher: American Mathematical Soc.
ISBN: 0821825984
Category : Mathematics
Languages : en
Pages : 102

Get Book Here

Book Description
The correlation of multiplicative arithmetic functions on distinct arithmetic progressions and with values in the complex unit disc, cannot be continually near to its possible maximum unless each function is either very close to or very far from a generalized character. Moreover, under accessible condition the second possibility can be ruled out. As a consequence analogs of the standard limit theorems in probabilistic number theory are obtained with the classical single additive function on the integers replaced by a sum of two additive functions on distinct arithmetic progressions.

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials

Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials PDF Author: Alouf Jirari
Publisher: American Mathematical Soc.
ISBN: 082180359X
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This memoir presents machinery for analyzing many discrete physical situations, and should be of interest to physicists, engineers, and mathematicians. We develop a theory for regular and singular Sturm-Liouville boundary value problems for difference equations, generalizing many of the known results for differential equations. We discuss the self-adjointness of these problems as well as their abstract spectral resolution in the appropriate [italic capital]L2 setting, and give necessary and sufficient conditions for a second-order difference operator to be self-adjoint and have orthogonal polynomials as eigenfunctions.

Subgroup Lattices and Symmetric Functions

Subgroup Lattices and Symmetric Functions PDF Author: Lynne M. Butler
Publisher: American Mathematical Soc.
ISBN: 082182600X
Category : Mathematics
Languages : en
Pages : 173

Get Book Here

Book Description
This work presents foundational research on two approaches to studying subgroup lattices of finite abelian p-groups. The first approach is linear algebraic in nature and generalizes Knuth's study of subspace lattices. This approach yields a combinatorial interpretation of the Betti polynomials of these Cohen-Macaulay posets. The second approach, which employs Hall-Littlewood symmetric functions, exploits properties of Kostka polynomials to obtain enumerative results such as rank-unimodality. Butler completes Lascoux and Schützenberger's proof that Kostka polynomials are nonnegative, then discusses their monotonicity result and a conjecture on Macdonald's two-variable Kostka functions.

Automorphisms of the Lattice of Recursively Enumerable Sets

Automorphisms of the Lattice of Recursively Enumerable Sets PDF Author: Peter Cholak
Publisher: American Mathematical Soc.
ISBN: 0821826018
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
A version of Harrington's [capital Greek]Delta3-automorphism technique for the lattice of recursively enumerable sets is introduced and developed by reproving Soare's Extension Theorem. Then this automorphism technique is used to show two technical theorems: the High Extension Theorem I and the High Extension Theorem II. This is a degree-theoretic technique for constructing both automorphisms of the lattice of r.e. sets and isomorphisms between various substructures of the lattice.

Unraveling the Integral Knot Concordance Group

Unraveling the Integral Knot Concordance Group PDF Author: Neal W. Stoltzfus
Publisher: American Mathematical Soc.
ISBN: 082182192X
Category : Mathematics
Languages : en
Pages : 103

Get Book Here

Book Description
The group of concordance classes of high dimensional homotopy spheres knotted in codimension two in the standard sphere has an intricate algebraic structure which this paper unravels. The first level of invariants is given by the classical Alexander polynomial. By means of a transfer construction, the integral Seifert matrices of knots whose Alexander polynomial is a power of a fixed irreducible polynomial are related to forms with the appropriate Hermitian symmetry on torsion free modules over an order in the algebraic number field determined by the Alexander polynomial. This group is then explicitly computed in terms of standard arithmetic invariants. In the symmetric case, this computation shows there are no elements of order four with an irreducible Alexander polynomial. Furthermore, the order is not necessarily Dedekind and non-projective modules can occur. The second level of invariants is given by constructing an exact sequence relating the global concordance group to the individual pieces described above. The integral concordance group is then computed by a localization exact sequence relating it to the rational group computed by J. Levine and a group of torsion linking forms.

$(16,6)$ Configurations and Geometry of Kummer Surfaces in ${\mathbb P}^3$

$(16,6)$ Configurations and Geometry of Kummer Surfaces in ${\mathbb P}^3$ PDF Author: Maria del Rosario Gonzalez-Dorrego
Publisher: American Mathematical Soc.
ISBN: 0821825747
Category : Mathematics
Languages : en
Pages : 114

Get Book Here

Book Description
The philosophy of the first part of this work is to understand (and classify) Kummer surfaces by studying (16, 6) configurations. Chapter 1 is devoted to classifying (16, 6) configurations and studying their manifold symmetries and the underlying questions about finite subgroups of [italic capitals]PGL4([italic]k). In chapter 2 we use this information to give a complete classification of Kummer surfaces together with explicit equations and the explicit description of their singularities.