Author: Giampaolo Cicogna
Publisher: Springer Science & Business Media
ISBN: 354048874X
Category : Science
Languages : en
Pages : 218
Book Description
has been in the of a Symmetry major ingredient development quantum perturba tion and it is a basic of the of theory, ingredient theory integrable (Hamiltonian and of the the use in context of non Hamiltonian) systems; yet, symmetry gen eral is rather recent. From the of view of nonlinear perturbation theory point the use of has become dynamics, widespread only through equivariant symmetry bifurcation in this attention has been confined to linear even theory; case, mostly symmetries. in recent the and of methods for dif Also, theory practice symmetry years ferential has become and has been to a equations increasingly popular applied of the of the book Olver This by variety problems (following appearance [2621). with is and deals of nature theory deeply geometrical symmetries general (pro vided that described i.e. in this context there is are vector no they by fields), to limit attention to linear reason symmetries. In this look the basic tools of i.e. normal book we at perturbation theory, introduced Poincar6 about and their inter a forms (first by century ago) study action with with no limitation to linear ones. We focus on the most symmetries, basic fixed the and i.e. a setting, systems having point (at origin) perturbative around thus is local.
Symmetry and Perturbation Theory in Nonlinear Dynamics
Author: Giampaolo Cicogna
Publisher: Springer Science & Business Media
ISBN: 354048874X
Category : Science
Languages : en
Pages : 218
Book Description
has been in the of a Symmetry major ingredient development quantum perturba tion and it is a basic of the of theory, ingredient theory integrable (Hamiltonian and of the the use in context of non Hamiltonian) systems; yet, symmetry gen eral is rather recent. From the of view of nonlinear perturbation theory point the use of has become dynamics, widespread only through equivariant symmetry bifurcation in this attention has been confined to linear even theory; case, mostly symmetries. in recent the and of methods for dif Also, theory practice symmetry years ferential has become and has been to a equations increasingly popular applied of the of the book Olver This by variety problems (following appearance [2621). with is and deals of nature theory deeply geometrical symmetries general (pro vided that described i.e. in this context there is are vector no they by fields), to limit attention to linear reason symmetries. In this look the basic tools of i.e. normal book we at perturbation theory, introduced Poincar6 about and their inter a forms (first by century ago) study action with with no limitation to linear ones. We focus on the most symmetries, basic fixed the and i.e. a setting, systems having point (at origin) perturbative around thus is local.
Publisher: Springer Science & Business Media
ISBN: 354048874X
Category : Science
Languages : en
Pages : 218
Book Description
has been in the of a Symmetry major ingredient development quantum perturba tion and it is a basic of the of theory, ingredient theory integrable (Hamiltonian and of the the use in context of non Hamiltonian) systems; yet, symmetry gen eral is rather recent. From the of view of nonlinear perturbation theory point the use of has become dynamics, widespread only through equivariant symmetry bifurcation in this attention has been confined to linear even theory; case, mostly symmetries. in recent the and of methods for dif Also, theory practice symmetry years ferential has become and has been to a equations increasingly popular applied of the of the book Olver This by variety problems (following appearance [2621). with is and deals of nature theory deeply geometrical symmetries general (pro vided that described i.e. in this context there is are vector no they by fields), to limit attention to linear reason symmetries. In this look the basic tools of i.e. normal book we at perturbation theory, introduced Poincar6 about and their inter a forms (first by century ago) study action with with no limitation to linear ones. We focus on the most symmetries, basic fixed the and i.e. a setting, systems having point (at origin) perturbative around thus is local.
Perturbation Theory
Author: Giuseppe Gaeta
Publisher: Springer Nature
ISBN: 1071626213
Category : Science
Languages : en
Pages : 601
Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.
Publisher: Springer Nature
ISBN: 1071626213
Category : Science
Languages : en
Pages : 601
Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Symmetries and Semi-invariants in the Analysis of Nonlinear Systems
Author: Laura Menini
Publisher: Springer Science & Business Media
ISBN: 0857296124
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion. The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.
Publisher: Springer Science & Business Media
ISBN: 0857296124
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion. The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.
Dynamics and Symmetry
Author: Mike Field
Publisher: World Scientific
ISBN: 1860948286
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book contains the first systematic exposition of the global and local theory of dynamics equivariant with respect to a (compact) Lie group. Aside from general genericity and normal form theorems on equivariant bifurcation, it describes many general families of examples of equivariant bifurcation and includes a number of novel geometric techniques, in particular, equivariant transversality. This important book forms a theoretical basis of future work on equivariant reversible and Hamiltonian systems.This book also provides a general and comprehensive introduction to codimension one equivariant bifurcation theory. In particular, it includes the bifurcation theory developed with Roger Richardson on subgroups of reflection groups and the Maximal Isotropy Subgroup Conjecture. A number of general results are also given on the global theory. Introductory material on groups, representations and G-manifolds are covered in the first three chapters of the book. In addition, a self-contained introduction of equivariant transversality is given, including necessary results on stratifications as well as results on equivariant jet transversality developed by Edward Bierstone.
Publisher: World Scientific
ISBN: 1860948286
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book contains the first systematic exposition of the global and local theory of dynamics equivariant with respect to a (compact) Lie group. Aside from general genericity and normal form theorems on equivariant bifurcation, it describes many general families of examples of equivariant bifurcation and includes a number of novel geometric techniques, in particular, equivariant transversality. This important book forms a theoretical basis of future work on equivariant reversible and Hamiltonian systems.This book also provides a general and comprehensive introduction to codimension one equivariant bifurcation theory. In particular, it includes the bifurcation theory developed with Roger Richardson on subgroups of reflection groups and the Maximal Isotropy Subgroup Conjecture. A number of general results are also given on the global theory. Introductory material on groups, representations and G-manifolds are covered in the first three chapters of the book. In addition, a self-contained introduction of equivariant transversality is given, including necessary results on stratifications as well as results on equivariant jet transversality developed by Edward Bierstone.
Mathematics of Complexity and Dynamical Systems
Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 348
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once -- setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 348
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once -- setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Nonlinear Dynamics and Spatial Complexity in Optical Systems
Author: R. G. Harrison
Publisher: CRC Press
ISBN: 1351091948
Category : Science
Languages : en
Pages : 318
Book Description
A collection of prestigious postgraduate lectures, Nonlinear Dynamics and Spatial Complexity in Optical Systems reviews developments in the theory and practice of nonlinear dynamics and structural complexity, and explores modern-day applications in nonlinear optics. The book addresses systems including both singlemode and multimode lasers, bistable and multistable devices, optical fibers, counter-propagating beam interactions, nonlinear mixing, and related optical phenomena.
Publisher: CRC Press
ISBN: 1351091948
Category : Science
Languages : en
Pages : 318
Book Description
A collection of prestigious postgraduate lectures, Nonlinear Dynamics and Spatial Complexity in Optical Systems reviews developments in the theory and practice of nonlinear dynamics and structural complexity, and explores modern-day applications in nonlinear optics. The book addresses systems including both singlemode and multimode lasers, bistable and multistable devices, optical fibers, counter-propagating beam interactions, nonlinear mixing, and related optical phenomena.
Handbook of Dynamical Systems
Author: H. Broer
Publisher: Elsevier
ISBN: 0080932266
Category : Mathematics
Languages : en
Pages : 556
Book Description
In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems
Publisher: Elsevier
ISBN: 0080932266
Category : Mathematics
Languages : en
Pages : 556
Book Description
In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems
Methods In Equivariant Bifurcations And Dynamical Systems
Author: Pascal Chossat
Publisher: World Scientific Publishing Company
ISBN: 9813105445
Category : Science
Languages : en
Pages : 422
Book Description
This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.
Publisher: World Scientific Publishing Company
ISBN: 9813105445
Category : Science
Languages : en
Pages : 422
Book Description
This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.