Switching Power Supplies A - Z

Switching Power Supplies A - Z PDF Author: Sanjaya Maniktala
Publisher: Elsevier
ISBN: 0123865336
Category : Technology & Engineering
Languages : en
Pages : 769

Get Book

Book Description
Chapter 1: The Principles of Switching Power Conversion Chapter 2: DC-DC Converter Design and Magnetics Chapter 3: Off-line Converter Design and Magnetics Chapter 4: The Topology FAQ Chapter 5: Optimal Core Selection Chapter 6: Component Ratings, Stresses, Reliability and Life Chapter 7: Optimal Power Components Selection Chapter 8: Conduction and Switching Losses Chapter 9: Discovering New Topologies Chapter 10: Printed Circuit Board Layout Chapter 11: Thermal Management Chapter 12: Feedback Loop Analysis and Stability Chapter 13: Paralleling, Interleaving and Sharing Chapter 14: The Front-End of AC-DC Power Supplies Chapter 15: DM and CM Noise in Switching Power Supplies Chapter 16: Fixing EMI across the Board Chapter 17: Input Capacitor and Stability Chapter 18: The Math behind the Electromagnetic Puzzle Chapter 19: Solved Examples Appendix A.

Switching Power Supplies A - Z

Switching Power Supplies A - Z PDF Author: Sanjaya Maniktala
Publisher: Elsevier
ISBN: 0123865336
Category : Technology & Engineering
Languages : en
Pages : 769

Get Book

Book Description
Chapter 1: The Principles of Switching Power Conversion Chapter 2: DC-DC Converter Design and Magnetics Chapter 3: Off-line Converter Design and Magnetics Chapter 4: The Topology FAQ Chapter 5: Optimal Core Selection Chapter 6: Component Ratings, Stresses, Reliability and Life Chapter 7: Optimal Power Components Selection Chapter 8: Conduction and Switching Losses Chapter 9: Discovering New Topologies Chapter 10: Printed Circuit Board Layout Chapter 11: Thermal Management Chapter 12: Feedback Loop Analysis and Stability Chapter 13: Paralleling, Interleaving and Sharing Chapter 14: The Front-End of AC-DC Power Supplies Chapter 15: DM and CM Noise in Switching Power Supplies Chapter 16: Fixing EMI across the Board Chapter 17: Input Capacitor and Stability Chapter 18: The Math behind the Electromagnetic Puzzle Chapter 19: Solved Examples Appendix A.

Switching Power Supplies A - Z

Switching Power Supplies A - Z PDF Author: Sanjaya Maniktala
Publisher: Elsevier
ISBN: 9780080461557
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book

Book Description
The design of Switching Power Supplies has become one of the most crucial aspects of power electronics, particularly in the explosive market for portable devices. Unfortunately, this seemingly simple mechanism is actually one of the most complex and under-estimated processes in Power Electronics. Switching power conversion involves several engineering disciplines: Semiconductor Physics, Thermal Management, Control Loop theory, Magnetics etc, and all these come into play eventually, in ways hard for non-experts to grasp. This book grows out of decades of the author’s experience designing commercial power supplies. Although his formal education was in physics, he learned the hard way what it took to succeed in designing power supplies for companies like Siemens and National Semiconductor. His passion for power supplies and his empathy for the practicing or aspiring power conversion engineer is evident on every page. * The most comprehensive study available of the theoretical and practical aspects of controlling and measuring Electromagnetic Interference in switching power supplies, including input filter instability considerations. * Step-by-step and iterative approach for calculating high-frequency losses in forward converter transformers, including Proximity losses based on Dowell's equations. * Thorough, yet uniquely simple design flow-chart for building DC-DC converters and their magnetic components under typical wide-input supply conditions * Step-by-step, solved examples for stabilizing control loops of all three major topologies, using either transconductance or conventional operational amplifiers, and either current-mode or voltage-mode control.

Switching Power Supply Design, 3rd Ed.

Switching Power Supply Design, 3rd Ed. PDF Author: Abraham Pressman
Publisher: Mcgraw-hill
ISBN: 9780071482721
Category : Technology & Engineering
Languages : en
Pages : 848

Get Book

Book Description
The World's #1 Guide to Power Supply Design Now Updated! Recognized worldwide as the definitive guide to power supply design for over 25 years, Switching Power Supply Design has been updated to cover the latest innovations in technology, materials, and components. This Third Edition presents the basic principles of the most commonly used topologies, providing you with the essential information required to design cutting-edge power supplies. Using a tutorial, how-and-why approach, this expert resource is filled with design examples, equations, and charts. The Third Edition of Switching Power Supply Design features: Designs for many of the most useful switching power supply topologies The core principles required to solve day-to-day design problems A strong focus on the essential basics of transformer and magnetics design New to this edition: a full chapter on choke design and optimum drive conditions for modern fast IGBTs Get Everything You Need to Design a Complete Switching Power Supply: Fundamental Switching Regulators * Push-Pull and Forward Converter Topologies * Half- and Full-Bridge Converter Topologies * Flyback Converter Topologies * Current-Mode and Current-Fed Topologies * Miscellaneous Topologies * Transformer and Magnetics Design * High-Frequency Choke Design * Optimum Drive Conditions for Bipolar Power Transistors, MOSFETs, Power Transistors, and IGBTs * Drive Circuits for Magnetic Amplifiers * Postregulators * Turn-on, Turn-off Switching Losses and Low Loss Snubbers * Feedback-Loop Stabilization * Resonant Converter Waveforms * Power Factor and Power Factor Correction * High-Frequency Power Sources for Fluorescent Lamps, and Low-Input-Voltage Regulators for Laptop Computers and Portable Equipment

Troubleshooting Switching Power Converters

Troubleshooting Switching Power Converters PDF Author: Sanjaya Maniktala
Publisher: Elsevier
ISBN: 9780080551258
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book

Book Description
Power Supply design is all about detail. And a large part of that detail lies in the practical domain, largely because of the typically small number of microseconds of switching periods involved, and the even smaller tens of nanoseconds of switch transition times --- all these, in effect accentuating various "second-order" effects, that eventually end up playing prime havoc with "normal" expectations of how the circuit should behave. So not unsurprisingly, even after reading several books, most readers still find themselves no closer to the ultimate goal of designing an actual power supply. Sooner or later, all engineers start realizing the hard fact that designing a switching power supply isn't the trivial task it once seemed to be. But even after years of successfully mastering the underlying theory, the ultimate goal of creating a cost-effective, reliable and commercially viable power supply may still remain a distant dream, since success ultimately hinges on experience. That is, in fact, what clearly differentiates a senior and seasoned power supply engineer from the others --- the ability to navigate and surmount a veritable minefield of tricky issues that can only be learned the hard way, by actual hands-on experience on the job. This book presents practical knowledge the author acquired rather painfully, while working "in the trenches" for several years in major engineering companies scattered across several continents. This is intended to be the mythical senior engineer's "bag of tricks," finally made available in the form of an easy-to-read book on your shelf. This book will make life for the ambitious power supply engineer much simpler --- besides reducing significantly, the rigorous requirement of having to be a senior engineer's protégé for years on end, just to gain a small measure of real success in this field. * A practical presentation that answers the important question: why is my switching converter behaving so differently than what I was expecting on the basis of my paper design? And how do I bridge that huge gap? * For the first time, a systematic and thorough discussion of troubleshooting switching power supplies. * Coverage of AC/DC and DC/DC power supplies. * Bench Evaluation of semiconductor ICs used in power conversion --- describing standard and unusual techniques mastered by the author, while testing similar chips at National Semiconductor. * Detailed coverage of vital topics that haven't been covered by available sources --- grounding systems, the subtleties of component datasheets, and using instruments and probes effectively. * Systematic investigation (type of failure mechanism, topology, etc.) and solutions for 5 years of reported power supply issues on a prominent, public web forum. This approach will ensure that engineers will not repeat the same mistakes. * A unique, readable style: personal and direct; no mystification--- just the plain truth, easily and logically explained, with plenty of pictures, graphs and plots.

Power Sources and Supplies: World Class Designs

Power Sources and Supplies: World Class Designs PDF Author: Marty Brown
Publisher: Elsevier
ISBN: 9780080556574
Category : Technology & Engineering
Languages : en
Pages : 400

Get Book

Book Description
Newnes has worked with Marty Brown, a leader in the field of power design to select the very best design-specific material from the Newnes portfolio. Marty selected material for its timelessness, its relevance to current power supply design needs, and its real-world approach to design issues. Special attention is given to switching power supplies and their design issues, including component selection, minimization of EMI, toroid selection, and breadboarding of designs. Emphasis is also placed on design strategies for power supplies, including case histories and design examples. This is a book that belongs on the workbench of every power supply designer! *Marty Brown, author and power supply design consultant, has personally selected all content for its relevance and usefulness *Covers best design practices for switching power supplies and power converters *Emphasis is on pragmatic solutions to commonly encountered design problems and tasks

Designing Control Loops for Linear and Switching Power Supplies

Designing Control Loops for Linear and Switching Power Supplies PDF Author: Christophe P. Basso
Publisher: Artech House
ISBN: 1608075575
Category : Technology & Engineering
Languages : en
Pages : 614

Get Book

Book Description
Loop control is an essential area of electronics engineering that todays professionals need to master. Rather than delving into extensive theory, this practical book focuses on what you really need to know for compensating or stabilizing a given control system. You can turn instantly to practical sections with numerous design examples and ready-made formulas to help you with your projects in the field. You also find coverage of the underpinnings and principles of control loops so you can gain a more complete understanding of the material. This authoritative volume explains how to conduct analysis of control systems and provides extensive details on practical compensators. It helps you measure your system, showing how to verify if a prototype is stable and features enough design margin. Moreover, you learn how to secure high-volume production by bench-verified safety margins.

Power Supply Cookbook

Power Supply Cookbook PDF Author: Marty Brown
Publisher: Elsevier
ISBN: 0080480128
Category : Technology & Engineering
Languages : en
Pages : 280

Get Book

Book Description
Power Supply Cookbook, Second Edition provides an easy-to-follow, step-by-step design framework for a wide variety of power supplies. With this book, anyone with a basic knowledge of electronics can create a very complicated power supply design in less than one day. With the common industry design approaches presented in each section, this unique book allows the reader to design linear, switching, and quasi-resonant switching power supplies in an organized fashion. Formerly complicated design topics such as magnetics, feedback loop compensation design, and EMI/RFI control are all described in simple language and design steps. This book also details easy-to-modify design examples that provide the reader with a design template useful for creating a variety of power supplies. This newly revised edition is a practical, "start-to-finish" design reference. It is organized to allow both seasoned and inexperienced engineers to quickly find and apply the information they need. Features of the new edition include updated information on the design of the output stages, selecting the controller IC, and other functions associated with power supplies, such as: switching power supply control, synchronization of the power supply to an external source, input low voltage inhibitors, loss of power signals, output voltage shut-down, major current loops, and paralleling filter capacitors. It also offers coverage of waveshaping techniques, major loss reduction techniques, snubbers, and quasi-resonant converters. Guides engineers through a step-by-step design framework for a wide variety of power supplies, many of which can be designed in less than one day Provides easy-to-understand information about often complicated topics, making power supply design a much more accessible and enjoyable process

Introduction to Modern Power Electronics

Introduction to Modern Power Electronics PDF Author: Andrzej M. Trzynadlowski
Publisher: John Wiley & Sons
ISBN: 1119003210
Category : Technology & Engineering
Languages : en
Pages : 468

Get Book

Book Description
Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.

Switching Power Supply Design and Optimization, Second Edition

Switching Power Supply Design and Optimization, Second Edition PDF Author: Sanjaya Maniktala
Publisher: McGraw Hill Professional
ISBN: 0071798137
Category : Technology & Engineering
Languages : en
Pages : 577

Get Book

Book Description
The latest techniques for designing state-of-the-art power supplies, including resonant (LLC) converters Extensively revised throughout, Switching Power Supply Design & Optimization, Second Edition, explains how to design reliable, high-performance switching power supplies for today's cutting-edge electronics. The book covers modern topologies and converters and features new information on designing or selecting bandgap references, transformer design using detailed new design charts for proximity effects, Buck efficiency loss teardown diagrams, active reset techniques, topology morphology, and a meticulous AC-DC front-end design procedure. This updated resource contains design charts and numerical examples for comprehensive feedback loop design, including TL431, plus the world’s first top-down simplified design methodology for wide-input resonant (LLC) converters. A step-by-step comparative design procedure for Forward and Flyback converters is also included in this practical guide. The new edition covers: Voltage references DC-DC converters: topologies to configurations Contemporary converters, composites, and related techniques Discontinuous conduction mode Comprehensive front-end design in AC-DC power conversion Topologies for AC-DC applications Tapped-inductor (autotransformer-based) converters Selecting inductors for DC-DC converters Flyback and Forward converter transformer design Forward and Flyback converters: step-by-step design and comparison PCBs and thermal management Closing the loop: feedback and stability, including TL431 Practical EMI filter design Reset techniques in Flyback and Forward converters Reliability, testing, and safety issues Unraveling and optimizing Buck converter efficiency Introduction to soft-switching and detailed LLC converter design methodology with PSpice simulations Practical circuits, design ideas, and component FAQs

Dynamic Power Supply Transmitters

Dynamic Power Supply Transmitters PDF Author: Earl McCune
Publisher: Cambridge University Press
ISBN: 1107059178
Category : Technology & Engineering
Languages : en
Pages : 495

Get Book

Book Description
"Power is dissipated (lost) when this current flows through any resistance, which includes the amplifier's transistor. This dissipated power is the product of the current in the load times the voltage difference between the supply voltage to the amplifier and the output signal voltage. When the voltage supplied to the amplifier is a constant value, and by far the most common design practice, the situation in Fig. 1-2a results. Power dissipation in the amplifier is maximum when the output signal voltage is 1/2 of the supply voltage. When the output signal voltage is higher, even though the current value is larger the voltage drop is less and the power dissipation is lower. Similarly, when the output signal voltage is small, even though the voltage drop is now large the current in the load is smaller and again the power dissipation is lower"--