Sums of Independent Random Variables

Sums of Independent Random Variables PDF Author: V.V. Petrov
Publisher: Springer Science & Business Media
ISBN: 3642658091
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity

Sums of Independent Random Variables

Sums of Independent Random Variables PDF Author: V.V. Petrov
Publisher: Springer Science & Business Media
ISBN: 3642658091
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity

Limit Distributions for Sums of Independent Random Variables

Limit Distributions for Sums of Independent Random Variables PDF Author: B V (Boris Vladimirovich) Gnedenko
Publisher: Hassell Street Press
ISBN: 9781014649485
Category :
Languages : en
Pages : 284

Get Book Here

Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Bernoulli, 1713 ; Bayes, 1763 ; Laplace, 1913

Bernoulli, 1713 ; Bayes, 1763 ; Laplace, 1913 PDF Author: Jerzy Neyman
Publisher:
ISBN:
Category : Probabilities
Languages : en
Pages : 0

Get Book Here

Book Description


Modern Theory of Summation of Random Variables

Modern Theory of Summation of Random Variables PDF Author: Vladimir M. Zolotarev
Publisher: Walter de Gruyter
ISBN: 3110936534
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.

The Collected Works of Wassily Hoeffding

The Collected Works of Wassily Hoeffding PDF Author: Wassily Hoeffding
Publisher: Springer Science & Business Media
ISBN: 1461208653
Category : Mathematics
Languages : en
Pages : 653

Get Book Here

Book Description
It has been a rare privilege to assemble this volume of Wassily Hoeffding's Collected Works. Wassily was, variously, a teacher, supervisor and colleague to us, and his work has had a profound influence on our own. Yet this would not be sufficient reason to publish his collected works. The additional and overwhelmingly compelling justification comes from the fun damental nature of his contributions to Statistics and Probability. Not only were his ideas original, and far-reaching in their implications; Wassily de veloped them so completely and elegantly in his papers that they are still cited as prime references up to half a century later. However, three of his earliest papers are cited rarely, if ever. These include material from his doctoral dissertation. They were written in German, and two of them were published in relatively obscure series. Rather than reprint the original articles, we have chosen to have them translated into English. These trans lations appear in this book, making Wassily's earliest research available to a wide audience for the first time. All other articles (including those of his contributions to Mathematical Reviews which go beyond a simple reporting of contents of articles) have been reproduced as they appeared, together with annotations and corrections made by Wassily on some private copies of his papers. Preceding these articles are three review papers which dis cuss the . impact of his work in some of the areas where he made major contributions.

High-Dimensional Probability

High-Dimensional Probability PDF Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108244548
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.

Introduction to Probability

Introduction to Probability PDF Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Uniform Limit Theorems for Sums of Independent Random Variables

Uniform Limit Theorems for Sums of Independent Random Variables PDF Author: Taĭvo Viktorovich Arak
Publisher: American Mathematical Soc.
ISBN: 9780821831182
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
Among the diverse constructions studied in modern probability theory, the scheme for summation of independent random variables occupies a special place. This book presents a study of distributions of sums of independent random variables with minimal restrictions imposed on their distributions.

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition PDF Author: Marco Taboga
Publisher: Createspace Independent Publishing Platform
ISBN: 9781981369195
Category : Mathematical statistics
Languages : en
Pages : 670

Get Book Here

Book Description
The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.

Probability Inequalities

Probability Inequalities PDF Author: Zhengyan Lin
Publisher: Springer Science & Business Media
ISBN: 3642052614
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
Inequality has become an essential tool in many areas of mathematical research, for example in probability and statistics where it is frequently used in the proofs. "Probability Inequalities" covers inequalities related with events, distribution functions, characteristic functions, moments and random variables (elements) and their sum. The book shall serve as a useful tool and reference for scientists in the areas of probability and statistics, and applied mathematics. Prof. Zhengyan Lin is a fellow of the Institute of Mathematical Statistics and currently a professor at Zhejiang University, Hangzhou, China. He is the prize winner of National Natural Science Award of China in 1997. Prof. Zhidong Bai is a fellow of TWAS and the Institute of Mathematical Statistics; he is a professor at the National University of Singapore and Northeast Normal University, Changchun, China.