Studies of Nonlinear Problems for Maxwell's Equations

Studies of Nonlinear Problems for Maxwell's Equations PDF Author: Ying Li
Publisher:
ISBN:
Category : Maxwell equations
Languages : en
Pages : 192

Get Book Here

Book Description

Studies of Nonlinear Problems for Maxwell's Equations

Studies of Nonlinear Problems for Maxwell's Equations PDF Author: Ying Li
Publisher:
ISBN:
Category : Maxwell equations
Languages : en
Pages : 192

Get Book Here

Book Description


Maxwell’s Equations in Periodic Structures

Maxwell’s Equations in Periodic Structures PDF Author: Gang Bao
Publisher: Springer Nature
ISBN: 9811600619
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
This book addresses recent developments in mathematical analysis and computational methods for solving direct and inverse problems for Maxwell’s equations in periodic structures. The fundamental importance of the fields is clear, since they are related to technology with significant applications in optics and electromagnetics. The book provides both introductory materials and in-depth discussion to the areas in diffractive optics that offer rich and challenging mathematical problems. It is also intended to convey up-to-date results to students and researchers in applied and computational mathematics, and engineering disciplines as well.

Nonlinear Partial Differential Equations in Physical Problems

Nonlinear Partial Differential Equations in Physical Problems PDF Author: Dario Graffi
Publisher: Pitman Advanced Publishing Program
ISBN:
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description


Lectures on Nonlinear Evolution Equations

Lectures on Nonlinear Evolution Equations PDF Author: Reinhard Racke
Publisher: Birkhäuser
ISBN: 3319218735
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided. In this second edition, initial-boundary value problems in waveguides are additionally considered.

Inverse Problems for Maxwell's Equations

Inverse Problems for Maxwell's Equations PDF Author: V. G. Romanov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110900106
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

Mathematical Problems of Classical Nonlinear Electromagnetic Theory

Mathematical Problems of Classical Nonlinear Electromagnetic Theory PDF Author: Frederick Bloom
Publisher: CRC Press
ISBN: 9780582210219
Category : Science
Languages : en
Pages : 412

Get Book Here

Book Description
A survey of some problems of current interest in the realm of classical nonlinear electromagnetic theory.

Nonlinear and Inverse Problems in Electromagnetics

Nonlinear and Inverse Problems in Electromagnetics PDF Author: L. Beilina
Publisher: Springer
ISBN: 3319940600
Category : Mathematics
Languages : en
Pages : 151

Get Book Here

Book Description
This volume provides academic discussion on the theory and practice of mathematical analysis of nonlinear and inverse problems in electromagnetics and their applications. From mathematical problem statement to numerical results, the featured articles provide a concise overview of comprehensive approaches to the solution of problems. Articles highlight the most recent research concerning reliable theoretical approaches and numerical techniques and cover a wide range of applications, including acoustics, electromagnetics, optics, medical imaging, and geophysics. The nonlinear and ill-posed nature of inverse problems and the challenges they present when developing new numerical methods are explained, and numerical verification of proposed new methods on simulated and experimental data is provided. Based on the special session of the same name at the 2017 Progress in Electromagnetics Research Symposium, this book offers a platform for interaction between theoretical and practical researchers and between senior and incoming members in the field.

Nonlinear Problems in Mathematical Physics and Related Topics II

Nonlinear Problems in Mathematical Physics and Related Topics II PDF Author: Michael Sh. Birman
Publisher: Springer
ISBN: 9781461507017
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The main topics reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered in the volume is the Navier-Stokes equations. This subject is investigated in many different directions. In particular, the existence and uniqueness results are obtained for the Navier-Stokes equations in spaces of low regularity. A sufficient condition for the regularity of solutions to the evolution Navier-Stokes equations in the three-dimensional case is derived and the stabilization of a solution to the Navier-Stokes equations to the steady-state solution and the realization of stabilization by a feedback boundary control are discussed in detail. Connections between the regularity problem for the Navier-Stokes equations and a backward uniqueness problem for the heat operator are also clarified. Generalizations and modified Navier-Stokes equations modeling various physical phenomena such as the mixture of fluids and isotropic turbulence are also considered. Numerical results for the Navier-Stokes equations, as well as for the porous medium equation and the heat equation, obtained by the diffusion velocity method are illustrated by computer graphs. Some other models describing various processes in continuum mechanics are studied from the mathematical point of view. In particular, a structure theorem for divergence-free vector fields in the plane for a problem arising in a micromagnetics model is proved. The absolute continuity of the spectrum of the elasticity operator appearing in a problem for an isotropic periodic elastic medium with constant shear modulus (the Hill body) is established. Time-discretization problems for generalized Newtonian fluids are discussed, the unique solvability of the initial-value problem for the inelastic homogeneous Boltzmann equation for hard spheres, with a diffusive term representing a random background acceleration is proved and some qualitative properties of the solution are studied. An approach to mathematical statements based on the Maxwell model and illustrated by the Lavrent'ev problem on the wave formation caused by explosion welding is presented. The global existence and uniqueness of a solution to the initial boundary-value problem for the equations arising in the modelling of the tension-driven Marangoni convection and the existence of a minimal global attractor are established. The existence results, regularity properties, and pointwise estimates for solutions to the Cauchy problem for linear and nonlinear Kolmogorov-type operators arising in diffusion theory, probability, and finance, are proved. The existence of minimizers for the energy functional in the Skyrme model for the low-energy interaction of pions which describes elementary particles as spatially localized solutions of nonlinear partial differential equations is also proved. Several papers are devoted to the study of nonlinear elliptic and parabolic operators. Versions of the mean value theorems and Harnack inequalities are studied for the heat equation, and connections with the so-called growth theorems for more general second-order elliptic and parabolic equations in the divergence or nondivergence form are investigated. Additionally, qualitative properties of viscosity solutions of fully nonlinear partial differential inequalities of elliptic and degenerate elliptic type are clarified. Some uniqueness results for identification of quasilinear elliptic and parabolic equations are presented and the existence of smooth solutions of a class of Hessian equations on a compact Riemannian manifold without imposing any curvature restrictions on the manifold is established.

Principles of Advanced Mathematical Physics

Principles of Advanced Mathematical Physics PDF Author: R.D. Richtmyer
Publisher: Springer Science & Business Media
ISBN: 3642510760
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description


Nonlinear Problems in Mathematical Physics and Related Topics II

Nonlinear Problems in Mathematical Physics and Related Topics II PDF Author: Michael Sh. Birman
Publisher: Springer
ISBN: 9781461352020
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
The main topics reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered in the volume is the Navier-Stokes equations. This subject is investigated in many different directions. In particular, the existence and uniqueness results are obtained for the Navier-Stokes equations in spaces of low regularity. A sufficient condition for the regularity of solutions to the evolution Navier-Stokes equations in the three-dimensional case is derived and the stabilization of a solution to the Navier-Stokes equations to the steady-state solution and the realization of stabilization by a feedback boundary control are discussed in detail. Connections between the regularity problem for the Navier-Stokes equations and a backward uniqueness problem for the heat operator are also clarified. Generalizations and modified Navier-Stokes equations modeling various physical phenomena such as the mixture of fluids and isotropic turbulence are also considered. Numerical results for the Navier-Stokes equations, as well as for the porous medium equation and the heat equation, obtained by the diffusion velocity method are illustrated by computer graphs. Some other models describing various processes in continuum mechanics are studied from the mathematical point of view. In particular, a structure theorem for divergence-free vector fields in the plane for a problem arising in a micromagnetics model is proved. The absolute continuity of the spectrum of the elasticity operator appearing in a problem for an isotropic periodic elastic medium with constant shear modulus (the Hill body) is established. Time-discretization problems for generalized Newtonian fluids are discussed, the unique solvability of the initial-value problem for the inelastic homogeneous Boltzmann equation for hard spheres, with a diffusive term representing a random background acceleration is proved and some qualitative properties of the solution are studied. An approach to mathematical statements based on the Maxwell model and illustrated by the Lavrent'ev problem on the wave formation caused by explosion welding is presented. The global existence and uniqueness of a solution to the initial boundary-value problem for the equations arising in the modelling of the tension-driven Marangoni convection and the existence of a minimal global attractor are established. The existence results, regularity properties, and pointwise estimates for solutions to the Cauchy problem for linear and nonlinear Kolmogorov-type operators arising in diffusion theory, probability, and finance, are proved. The existence of minimizers for the energy functional in the Skyrme model for the low-energy interaction of pions which describes elementary particles as spatially localized solutions of nonlinear partial differential equations is also proved. Several papers are devoted to the study of nonlinear elliptic and parabolic operators. Versions of the mean value theorems and Harnack inequalities are studied for the heat equation, and connections with the so-called growth theorems for more general second-order elliptic and parabolic equations in the divergence or nondivergence form are investigated. Additionally, qualitative properties of viscosity solutions of fully nonlinear partial differential inequalities of elliptic and degenerate elliptic type are clarified. Some uniqueness results for identification of quasilinear elliptic and parabolic equations are presented and the existence of smooth solutions of a class of Hessian equations on a compact Riemannian manifold without imposing any curvature restrictions on the manifold is established.