Studies into Additive Manufacturing for In-Space Manufacturing

Studies into Additive Manufacturing for In-Space Manufacturing PDF Author: Rani Elhajjar
Publisher: SAE International
ISBN: 0768083737
Category : Technology & Engineering
Languages : en
Pages : 92

Get Book Here

Book Description
Additive manufacturing (AM) for space exploration has become a growing opportunity as long-range space missions evolve. In partnership with the National Space Grant Foundation and NASA, students from the University of Wisconsin-Milwaukee participated in the 2014-15 X-Hab Academic Innovation Challenge, with participants tasked with developing new AM solutions that would be recyclable with minimal loss in mechanical properties. The teams investigated materials, characterization, testing, modeling, and tool development, including the ability to employ reusable carbon-fiber tension ties. The tools developed show that it is possible to employ thermoplastic polymer materials fabricated using AM together with reusable and flexible high-performance carbon-fiber-based composite ties. The AM-printed part is completely recyclable. The carbon-fiber composite ties are repurposed into new structural configurations without loss in properties. The results of this project are now published by SAE International. Studies into Additive Manufacturing for In-Space Manufacturing is a series of interconnected papers that explore: Lessons learned in processing of recycled thermoplastic filaments The criticality of process control on the print process The effects of orientation angles and print parameters on mechanical behavior Microstructural analysis Case studies of tools included in the spacecraft's toolbox

Studies into Additive Manufacturing for In-Space Manufacturing

Studies into Additive Manufacturing for In-Space Manufacturing PDF Author: Rani Elhajjar
Publisher: SAE International
ISBN: 0768083737
Category : Technology & Engineering
Languages : en
Pages : 92

Get Book Here

Book Description
Additive manufacturing (AM) for space exploration has become a growing opportunity as long-range space missions evolve. In partnership with the National Space Grant Foundation and NASA, students from the University of Wisconsin-Milwaukee participated in the 2014-15 X-Hab Academic Innovation Challenge, with participants tasked with developing new AM solutions that would be recyclable with minimal loss in mechanical properties. The teams investigated materials, characterization, testing, modeling, and tool development, including the ability to employ reusable carbon-fiber tension ties. The tools developed show that it is possible to employ thermoplastic polymer materials fabricated using AM together with reusable and flexible high-performance carbon-fiber-based composite ties. The AM-printed part is completely recyclable. The carbon-fiber composite ties are repurposed into new structural configurations without loss in properties. The results of this project are now published by SAE International. Studies into Additive Manufacturing for In-Space Manufacturing is a series of interconnected papers that explore: Lessons learned in processing of recycled thermoplastic filaments The criticality of process control on the print process The effects of orientation angles and print parameters on mechanical behavior Microstructural analysis Case studies of tools included in the spacecraft's toolbox

3D Printing in Space

3D Printing in Space PDF Author: National Research Council (U.S.). Committee on Space-Based Additive Manufacturing
Publisher:
ISBN: 9780309310086
Category : Business & Economics
Languages : en
Pages : 0

Get Book Here

Book Description
Additive manufacturing has the potential to positively affect human spaceflight operations by enabling the in-orbit manufacture of replacement parts and tools, which could reduce existing logistics requirements for the International Space Station and future long-duration human space missions. The benefits of in-space additive manufacturing for robotic spacecraft are far less clear, although this rapidly advancing technology can also potentially enable space-based construction of large structures and, perhaps someday, substantially in the future, entire spacecraft. Additive manufacturing can also help to reimagine a new space architecture that is not constrained by the design and manufacturing confines of gravity, current manufacturing processes, and launch-related structural stresses. The specific benefits and potential scope of additive manufacturing remain undetermined. The realities of what can be accomplished today, using this technology on the ground, demonstrate the substantial gaps between the vision for additive manufacturing in space and the limitations of the technology and the progress that has to be made to develop it for space use. 3D Printing in Space evaluates the prospects of in-space additive manufacturing. This report examines the various technologies available and currently in development, and considers the possible impacts for crewed space operations and robotic spacecraft operations. Ground-based additive manufacturing is being rapidly developed by industry, and 3D Printing in Space discusses government-industry investments in technology development. According to this report, the International Space Station provides an excellent opportunity for both civilian and military research on additive manufacturing technology. Additive manufacturing presents potential opportunities, both as a tool in a broad toolkit of options for space-based activities and as a potential paradigm-changing approach to designing hardware for in-space activities. This report makes recommendations for future research, suggests objectives for an additive manufacturing roadmap, and envisions opportunities for cooperation and joint development.

Additive Manufacturing for the Aerospace Industry

Additive Manufacturing for the Aerospace Industry PDF Author: Francis H. Froes
Publisher: Elsevier
ISBN: 0128140631
Category : Technology & Engineering
Languages : en
Pages : 483

Get Book Here

Book Description
Additive Manufacturing for the Aerospace Industry explores the design, processing, metallurgy and applications of additive manufacturing (AM) within the aerospace industry. The book's editors have assembled an international team of experts who discuss recent developments and the future prospects of additive manufacturing. The work includes a review of the advantages of AM over conventionally subtractive fabrication, including cost considerations. Microstructures and mechanical properties are also presented, along with examples of components fabricated by AM. Readers will find information on a broad range of materials and processes used in additive manufacturing. It is ideal reading for those in academia, government labs, component fabricators, and research institutes, but will also appeal to all sectors of the aerospace industry. - Provides information on a broad range of materials and processes used in additive manufacturing - Presents recent developments in the design and applications of additive manufacturing specific to the aerospace industry - Covers a wide array of materials for use in the additive manufacturing of aerospace parts - Discusses current standards in the area of aerospace AM parts

Additive Manufacturing

Additive Manufacturing PDF Author: T.S. Srivatsan
Publisher: CRC Press
ISBN: 1498714781
Category : Technology & Engineering
Languages : en
Pages : 448

Get Book Here

Book Description
Get Ready for the Future of Additive ManufacturingAdditive Manufacturing: Innovations, Advances, and Applications explores the emerging field of additive manufacturing (AM)-the use of 3D printing to make prototype parts on demand. Often referred to as the third industrial revolution, AM offers many advantages over traditional manufacturing. This pr

Orbital Debris

Orbital Debris PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309051258
Category : Science
Languages : en
Pages : 225

Get Book Here

Book Description
Since the beginning of space flight, the collision hazard in Earth orbit has increased as the number of artificial objects orbiting the Earth has grown. Spacecraft performing communications, navigation, scientific, and other missions now share Earth orbit with spent rocket bodies, nonfunctional spacecraft, fragments from spacecraft breakups, and other debris created as a byproduct of space operations. Orbital Debris examines the methods we can use to characterize orbital debris, estimates the magnitude of the debris population, and assesses the hazard that this population poses to spacecraft. Potential methods to protect spacecraft are explored. The report also takes a close look at the projected future growth in the debris population and evaluates approaches to reducing that growth. Orbital Debris offers clear recommendations for targeted research on the debris population, for methods to improve the protection of spacecraft, on methods to reduce the creation of debris in the future, and much more.

Additive Manufacturing

Additive Manufacturing PDF Author: Amit Bandyopadhyay
Publisher: CRC Press
ISBN: 1498766706
Category : Technology & Engineering
Languages : en
Pages : 547

Get Book Here

Book Description
The field of additive manufacturing has seen explosive growth in recent years due largely in part to renewed interest from the manufacturing sector. Conceptually, additive manufacturing, or industrial 3D printing, is a way to build parts without using any part-specific tooling or dies from the computer-aided design (CAD) file of the part. Today, mo

Studies Into Additive Manufacturing for In-Space Manufacturing

Studies Into Additive Manufacturing for In-Space Manufacturing PDF Author: Rani Ellhajjar
Publisher:
ISBN: 9780768088670
Category :
Languages : en
Pages : 134

Get Book Here

Book Description
Additive manufacturing (AM) for space exploration has become a growing opportunity as long-range space missions evolve. In partnership with the National Space Grant Foundation and NASA, students from the University of Wisconsin-Milwaukee participated in the 2014-15 X-Hab Academic Innovation Challenge, with participants tasked with developing new AM solutions that would be recyclable with minimal loss in mechanical properties. The teams investigated materials, characterization, testing, modeling, and tool development, including the ability to employ reusable carbon-fiber tension ties. The tools.

Process–Structure–Properties in Polymer Additive Manufacturing

Process–Structure–Properties in Polymer Additive Manufacturing PDF Author: Swee Leong Sing
Publisher: MDPI
ISBN: 303651371X
Category : Technology & Engineering
Languages : en
Pages : 218

Get Book Here

Book Description
Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.

Design for Additive Manufacturing

Design for Additive Manufacturing PDF Author: Martin Leary
Publisher: Elsevier
ISBN: 0128168870
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book Here

Book Description
Design for Additive Manufacturing is a complete guide to design tools for the manufacturing requirements of AM and how they can enable the optimization of process and product parameters for the reduction of manufacturing costs and effort. This timely synopsis of state-of-the-art design tools for AM brings the reader right up-to-date on the latest methods from both academia and industry. Tools for both metallic and polymeric AM technologies are presented and critically reviewed, along with their manufacturing attributes. Commercial applications of AM are also explained with case studies from a range of industries, thus demonstrating best-practice in AM design. - Covers all the commonly used tools for designing for additive manufacturing, as well as descriptions of important emerging technologies - Provides systematic methods for optimizing AM process selection for specific production requirement - Addresses design tools for both metallic and polymeric AM technologies - Includes commercially relevant case studies that showcase best-practice in AM design, including the biomedical, aerospace, defense and automotive sectors

Additive Manufacturing Applications for Metals and Composites

Additive Manufacturing Applications for Metals and Composites PDF Author: Balasubramanian, K.R.
Publisher: IGI Global
ISBN: 1799840557
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.