Author: A. O. Slisenko
Publisher: Springer Science & Business Media
ISBN: 1468489682
Category : Science
Languages : en
Pages : 96
Book Description
This volume contains a number of short papers reporting results presented to the Leningrad Seminar on Constructive Mathematics or to the Leningrad Seminar on Mathematical Logic. As a rule, the notes do not contain detailed proofs. Complete explanations will be printed in the Trudy (Transac tions) of the V.A. Steklov Mathematics Institute AN SSSR (in the "Problems of Constructive Direction in Mathematics" and the "Mathematical Logic and Logical Calculus" series). The papers published herein are primarily from the constructive direction in mathematics. A. Slisenko v CONTENTS 1 Method of Establishing Deducibility in Classical Predicate Calculus ... G.V. Davydov 5 On the Correction of Unprovable Formulas ... G.V. Davydov Lebesgue Integral in Constructive Analysis ... 9 O. Demuth Sufficient Conditions of Incompleteness for the Formalization of Parts of Arithmetic ... 15 N.K. Kosovskii Normal Formfor Deductions in Predicate Calculus with Equality and Functional Symbols. ... 21 V.A. Lifshits Some Reduction Classes and Undecidable Theories. ... . 24 ... V.A. Lifshits Deductive Validity and Reduction Classes. ... 26 ... V.A. Lifshits Problem of Decidability for Some Constructive Theories of Equalities. ... 29 . . V.A. Lifshits On Constructive Groups. ... . . 32 ... V.A. Lifshits Invertible Sequential Variant of Constructive Predicate Calculus. ... . 36 . S. Yu. Maslov Choice of Terms in Quantifier Rules of Constructive Predicate Calculus .. 43 G.E. Mints Analog of Herbrand's Theorem for Prenex Formulas of Constructive Predicate Calculus .. 47 G.E. Mints Variation in the Deduction Search Tactics in Sequential Calculus ... 52 ... G.E. Mints Imbedding Operations Associated with Kripke's "Semantics" ... 60 ...
Studies in Constructive Mathematics and Mathematical Logic
Author: A. O. Slisenko
Publisher: Springer Science & Business Media
ISBN: 1468489682
Category : Science
Languages : en
Pages : 96
Book Description
This volume contains a number of short papers reporting results presented to the Leningrad Seminar on Constructive Mathematics or to the Leningrad Seminar on Mathematical Logic. As a rule, the notes do not contain detailed proofs. Complete explanations will be printed in the Trudy (Transac tions) of the V.A. Steklov Mathematics Institute AN SSSR (in the "Problems of Constructive Direction in Mathematics" and the "Mathematical Logic and Logical Calculus" series). The papers published herein are primarily from the constructive direction in mathematics. A. Slisenko v CONTENTS 1 Method of Establishing Deducibility in Classical Predicate Calculus ... G.V. Davydov 5 On the Correction of Unprovable Formulas ... G.V. Davydov Lebesgue Integral in Constructive Analysis ... 9 O. Demuth Sufficient Conditions of Incompleteness for the Formalization of Parts of Arithmetic ... 15 N.K. Kosovskii Normal Formfor Deductions in Predicate Calculus with Equality and Functional Symbols. ... 21 V.A. Lifshits Some Reduction Classes and Undecidable Theories. ... . 24 ... V.A. Lifshits Deductive Validity and Reduction Classes. ... 26 ... V.A. Lifshits Problem of Decidability for Some Constructive Theories of Equalities. ... 29 . . V.A. Lifshits On Constructive Groups. ... . . 32 ... V.A. Lifshits Invertible Sequential Variant of Constructive Predicate Calculus. ... . 36 . S. Yu. Maslov Choice of Terms in Quantifier Rules of Constructive Predicate Calculus .. 43 G.E. Mints Analog of Herbrand's Theorem for Prenex Formulas of Constructive Predicate Calculus .. 47 G.E. Mints Variation in the Deduction Search Tactics in Sequential Calculus ... 52 ... G.E. Mints Imbedding Operations Associated with Kripke's "Semantics" ... 60 ...
Publisher: Springer Science & Business Media
ISBN: 1468489682
Category : Science
Languages : en
Pages : 96
Book Description
This volume contains a number of short papers reporting results presented to the Leningrad Seminar on Constructive Mathematics or to the Leningrad Seminar on Mathematical Logic. As a rule, the notes do not contain detailed proofs. Complete explanations will be printed in the Trudy (Transac tions) of the V.A. Steklov Mathematics Institute AN SSSR (in the "Problems of Constructive Direction in Mathematics" and the "Mathematical Logic and Logical Calculus" series). The papers published herein are primarily from the constructive direction in mathematics. A. Slisenko v CONTENTS 1 Method of Establishing Deducibility in Classical Predicate Calculus ... G.V. Davydov 5 On the Correction of Unprovable Formulas ... G.V. Davydov Lebesgue Integral in Constructive Analysis ... 9 O. Demuth Sufficient Conditions of Incompleteness for the Formalization of Parts of Arithmetic ... 15 N.K. Kosovskii Normal Formfor Deductions in Predicate Calculus with Equality and Functional Symbols. ... 21 V.A. Lifshits Some Reduction Classes and Undecidable Theories. ... . 24 ... V.A. Lifshits Deductive Validity and Reduction Classes. ... 26 ... V.A. Lifshits Problem of Decidability for Some Constructive Theories of Equalities. ... 29 . . V.A. Lifshits On Constructive Groups. ... . . 32 ... V.A. Lifshits Invertible Sequential Variant of Constructive Predicate Calculus. ... . 36 . S. Yu. Maslov Choice of Terms in Quantifier Rules of Constructive Predicate Calculus .. 43 G.E. Mints Analog of Herbrand's Theorem for Prenex Formulas of Constructive Predicate Calculus .. 47 G.E. Mints Variation in the Deduction Search Tactics in Sequential Calculus ... 52 ... G.E. Mints Imbedding Operations Associated with Kripke's "Semantics" ... 60 ...
Algorithmic Randomness
Author: Johanna N. Y. Franklin
Publisher: Cambridge University Press
ISBN: 1108808271
Category : Mathematics
Languages : en
Pages : 371
Book Description
The last two decades have seen a wave of exciting new developments in the theory of algorithmic randomness and its applications to other areas of mathematics. This volume surveys much of the recent work that has not been included in published volumes until now. It contains a range of articles on algorithmic randomness and its interactions with closely related topics such as computability theory and computational complexity, as well as wider applications in areas of mathematics including analysis, probability, and ergodic theory. In addition to being an indispensable reference for researchers in algorithmic randomness, the unified view of the theory presented here makes this an excellent entry point for graduate students and other newcomers to the field.
Publisher: Cambridge University Press
ISBN: 1108808271
Category : Mathematics
Languages : en
Pages : 371
Book Description
The last two decades have seen a wave of exciting new developments in the theory of algorithmic randomness and its applications to other areas of mathematics. This volume surveys much of the recent work that has not been included in published volumes until now. It contains a range of articles on algorithmic randomness and its interactions with closely related topics such as computability theory and computational complexity, as well as wider applications in areas of mathematics including analysis, probability, and ergodic theory. In addition to being an indispensable reference for researchers in algorithmic randomness, the unified view of the theory presented here makes this an excellent entry point for graduate students and other newcomers to the field.
Studies in Constructive Mathematics and Mathematical Logic
Author:
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 414
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 414
Book Description
What Can Be Computed?
Author: John MacCormick
Publisher: Princeton University Press
ISBN: 1400889847
Category : Computers
Languages : en
Pages : 405
Book Description
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
Publisher: Princeton University Press
ISBN: 1400889847
Category : Computers
Languages : en
Pages : 405
Book Description
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
The Publishers' Trade List Annual
Author:
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 1996
Book Description
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 1996
Book Description
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 730
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 730
Book Description
Logic Colloquium 2005
Author: Costas Dimitracopoulos
Publisher: Cambridge University Press
ISBN: 1139467255
Category : Mathematics
Languages : en
Pages : 272
Book Description
The Annual European Meeting of the Association for Symbolic Logic, generally known as the Logic Colloquium, is the most prestigious annual meeting in the field. Many of the papers presented there are invited surveys of developments, and the rest of the papers are chosen to complement the invited talks. This 2007 volume includes surveys, tutorials, and selected research papers from the 2005 meeting. Highlights include three papers on different aspects of connections between model theory and algebra; a survey of major advances in combinatorial set theory; a tutorial on proof theory and modal logic; and a description of Bernay's philosophy of mathematics.
Publisher: Cambridge University Press
ISBN: 1139467255
Category : Mathematics
Languages : en
Pages : 272
Book Description
The Annual European Meeting of the Association for Symbolic Logic, generally known as the Logic Colloquium, is the most prestigious annual meeting in the field. Many of the papers presented there are invited surveys of developments, and the rest of the papers are chosen to complement the invited talks. This 2007 volume includes surveys, tutorials, and selected research papers from the 2005 meeting. Highlights include three papers on different aspects of connections between model theory and algebra; a survey of major advances in combinatorial set theory; a tutorial on proof theory and modal logic; and a description of Bernay's philosophy of mathematics.
Handbook of Practical Logic and Automated Reasoning
Author: John Harrison
Publisher: Cambridge University Press
ISBN: 113947927X
Category : Computers
Languages : en
Pages : 683
Book Description
The sheer complexity of computer systems has meant that automated reasoning, i.e. the ability of computers to perform logical inference, has become a vital component of program construction and of programming language design. This book meets the demand for a self-contained and broad-based account of the concepts, the machinery and the use of automated reasoning. The mathematical logic foundations are described in conjunction with practical application, all with the minimum of prerequisites. The approach is constructive, concrete and algorithmic: a key feature is that methods are described with reference to actual implementations (for which code is supplied) that readers can use, modify and experiment with. This book is ideally suited for those seeking a one-stop source for the general area of automated reasoning. It can be used as a reference, or as a place to learn the fundamentals, either in conjunction with advanced courses or for self study.
Publisher: Cambridge University Press
ISBN: 113947927X
Category : Computers
Languages : en
Pages : 683
Book Description
The sheer complexity of computer systems has meant that automated reasoning, i.e. the ability of computers to perform logical inference, has become a vital component of program construction and of programming language design. This book meets the demand for a self-contained and broad-based account of the concepts, the machinery and the use of automated reasoning. The mathematical logic foundations are described in conjunction with practical application, all with the minimum of prerequisites. The approach is constructive, concrete and algorithmic: a key feature is that methods are described with reference to actual implementations (for which code is supplied) that readers can use, modify and experiment with. This book is ideally suited for those seeking a one-stop source for the general area of automated reasoning. It can be used as a reference, or as a place to learn the fundamentals, either in conjunction with advanced courses or for self study.
American Scientist
Author:
Publisher:
ISBN:
Category : Greek letter societies
Languages : en
Pages : 1060
Book Description
Publisher:
ISBN:
Category : Greek letter societies
Languages : en
Pages : 1060
Book Description
Handbook of Philosophical Logic
Author: Dov M. Gabbay
Publisher: Springer Science & Business Media
ISBN: 9400952031
Category : Philosophy
Languages : en
Pages : 527
Book Description
This volume presents a number of systems of logic which can be considered as alternatives to classical logic. The notion of what counts as an alternative is a somewhat problematic one. There are extreme views on the matter of what is the 'correct' logical system and whether one logical system (e. g. classical logic) can represent (or contain) all the others. The choice of the systems presented in this volume was guided by the following criteria for including a logic as an alternative: (i) the departure from classical logic in accepting or rejecting certain theorems of classical logic following intuitions arising from significant application areas and/or from human reasoning; (ii) the alternative logic is well-established and well-understood mathematically and is widely applied in other disciplines such as mathematics, physics, computer science, philosophy, psychology, or linguistics. A number of other alternatives had to be omitted for the present volume (e. g. recent attempts to formulate so-called 'non-monotonic' reason ing systems). Perhaps these can be included in future extensions of the Handbook of Philosophical Logic. Chapter 1 deals with partial logics, that is, systems where sentences do not always have to be either true or false, and where terms do not always have to denote. These systems are thus, in general, geared towards reasoning in partially specified models. Logics of this type have arisen mainly from philo sophical and linguistic considerations; various applications in theoretical computer science have also been envisaged.
Publisher: Springer Science & Business Media
ISBN: 9400952031
Category : Philosophy
Languages : en
Pages : 527
Book Description
This volume presents a number of systems of logic which can be considered as alternatives to classical logic. The notion of what counts as an alternative is a somewhat problematic one. There are extreme views on the matter of what is the 'correct' logical system and whether one logical system (e. g. classical logic) can represent (or contain) all the others. The choice of the systems presented in this volume was guided by the following criteria for including a logic as an alternative: (i) the departure from classical logic in accepting or rejecting certain theorems of classical logic following intuitions arising from significant application areas and/or from human reasoning; (ii) the alternative logic is well-established and well-understood mathematically and is widely applied in other disciplines such as mathematics, physics, computer science, philosophy, psychology, or linguistics. A number of other alternatives had to be omitted for the present volume (e. g. recent attempts to formulate so-called 'non-monotonic' reason ing systems). Perhaps these can be included in future extensions of the Handbook of Philosophical Logic. Chapter 1 deals with partial logics, that is, systems where sentences do not always have to be either true or false, and where terms do not always have to denote. These systems are thus, in general, geared towards reasoning in partially specified models. Logics of this type have arisen mainly from philo sophical and linguistic considerations; various applications in theoretical computer science have also been envisaged.