Structure Nanoengineering of Functional Nanomaterials

Structure Nanoengineering of Functional Nanomaterials PDF Author: Reza Zamani
Publisher:
ISBN:
Category :
Languages : en
Pages : 371

Get Book Here

Book Description
In this report novel materials for advanced applications are studied by means of the latest microscopy technologies and methodologies which have had a dramatic impact on progress of materials science. The aim was to study phenomena such as polytypism, unusual morphologies, polytypic branching, cation ordering, polarity, epitaxial growth and interface, etc, in order to find adequate explanations for the influence of the phenomena on the properties and applications such as thermoelectricity, p-n junction functionality, photovoltaic efficiency, optoelectronic properties, and sensing response. Various semiconducting materials, i.e. complex chalcogenides, metal oxides, and III-V nanostructures were characterized for this purpose. Here, nanoengineered structures of functional materials at nanoscale are studied by means of advanced electron microscopy methods. Chapter 1 gives a brief introduction to the report; the main purpose of the work, state-of-the-art, challenges and possibilities. In chapter 2 the methodology is described. The results are provided in Chapter 3, 4, and 5, and Chapter 6 is the general conclusions and the outlook. Note that Chapters 3-5 have their own introduction and conclusion. Therefore, chapter 1 consists of a short introduction to the general idea of the study, its importance and the state-of-the-art, and a preface of the thesis. In Chapter 2, after a brief history and the basic concepts of EM, the TEM methodology is described; the advanced TEM techniques used to study the nanostructured semiconductors at atomic scale. In general, it consists of brief descriptions of basic principles of TEM techniques. As experimental results are corroborated by theoretical studies and simulations, these procedures (image processing, simulations, etc) are also described shortly. Chapter 3 is dedicated to nanoengineering crystal structure and morphology of nanocrystals of complex copper-based chalcogenide, from binaries to complex ternaries and quaternaries. In this chapter it is shown that there is a wide range of possibilities for engineering, as many elements can be substituted with the primary cations and anions. Advanced TEM studies are performed in order to figure out the physics behind the property modifications. Phenomena such as morphology change, polytypism, ordering, polarity, electronic band change, strain, etc are elaborately studied, and correlated to the physical properties such as thermoelectricity. CCTSe polypods are the case of a complete structure study to understand the branching mechanism. Therefore, by means of an aberration-corrected TEM the polarity and cation ordering was determined. Polarity-driven morphology and branching mechanism is explained. Moreover, electronic band structure in this polytypic structure is simulated. Chapter 4 is based on the study of nanojunctions in metal oxide heterostructured NWs, structures that can enhance the functionality of the targeted devices, such as photovoltaic cells, or gas sensors. Production of nanojunctions is a successful approach in the context. In this chapter it is shown how coaxial heterostructuring of NWs, e.g. formation of core-shell structures increase the efficiency of the solar cells or enhance the sensitivity/selectivity of the gas sensors. In chapter 5 almost the same approach was followed, nevertheless, this time with III-V NWs. The importance of axial heterostructures and fully-epitaxial and relaxed structure are emphasized. The optoelectronic properties of the GaN NWs, such promising p-n junctions, are examined. Polarity issue, as a remarkably influencing parameter, is precisely studied experimentally. Its effect on electronic band structure in the heterointerface is also proven by the theoretical simulations. In the end, a general conclusion of the whole work and room for further study and future work is discussed in Chapter 6. The ample freedom of structural nanoengineering in the materials, together with development of novel electron microscopy techniques, opens the way towards the new possibilities for the future work.

Structure Nanoengineering of Functional Nanomaterials

Structure Nanoengineering of Functional Nanomaterials PDF Author: Reza Zamani
Publisher:
ISBN:
Category :
Languages : en
Pages : 371

Get Book Here

Book Description
In this report novel materials for advanced applications are studied by means of the latest microscopy technologies and methodologies which have had a dramatic impact on progress of materials science. The aim was to study phenomena such as polytypism, unusual morphologies, polytypic branching, cation ordering, polarity, epitaxial growth and interface, etc, in order to find adequate explanations for the influence of the phenomena on the properties and applications such as thermoelectricity, p-n junction functionality, photovoltaic efficiency, optoelectronic properties, and sensing response. Various semiconducting materials, i.e. complex chalcogenides, metal oxides, and III-V nanostructures were characterized for this purpose. Here, nanoengineered structures of functional materials at nanoscale are studied by means of advanced electron microscopy methods. Chapter 1 gives a brief introduction to the report; the main purpose of the work, state-of-the-art, challenges and possibilities. In chapter 2 the methodology is described. The results are provided in Chapter 3, 4, and 5, and Chapter 6 is the general conclusions and the outlook. Note that Chapters 3-5 have their own introduction and conclusion. Therefore, chapter 1 consists of a short introduction to the general idea of the study, its importance and the state-of-the-art, and a preface of the thesis. In Chapter 2, after a brief history and the basic concepts of EM, the TEM methodology is described; the advanced TEM techniques used to study the nanostructured semiconductors at atomic scale. In general, it consists of brief descriptions of basic principles of TEM techniques. As experimental results are corroborated by theoretical studies and simulations, these procedures (image processing, simulations, etc) are also described shortly. Chapter 3 is dedicated to nanoengineering crystal structure and morphology of nanocrystals of complex copper-based chalcogenide, from binaries to complex ternaries and quaternaries. In this chapter it is shown that there is a wide range of possibilities for engineering, as many elements can be substituted with the primary cations and anions. Advanced TEM studies are performed in order to figure out the physics behind the property modifications. Phenomena such as morphology change, polytypism, ordering, polarity, electronic band change, strain, etc are elaborately studied, and correlated to the physical properties such as thermoelectricity. CCTSe polypods are the case of a complete structure study to understand the branching mechanism. Therefore, by means of an aberration-corrected TEM the polarity and cation ordering was determined. Polarity-driven morphology and branching mechanism is explained. Moreover, electronic band structure in this polytypic structure is simulated. Chapter 4 is based on the study of nanojunctions in metal oxide heterostructured NWs, structures that can enhance the functionality of the targeted devices, such as photovoltaic cells, or gas sensors. Production of nanojunctions is a successful approach in the context. In this chapter it is shown how coaxial heterostructuring of NWs, e.g. formation of core-shell structures increase the efficiency of the solar cells or enhance the sensitivity/selectivity of the gas sensors. In chapter 5 almost the same approach was followed, nevertheless, this time with III-V NWs. The importance of axial heterostructures and fully-epitaxial and relaxed structure are emphasized. The optoelectronic properties of the GaN NWs, such promising p-n junctions, are examined. Polarity issue, as a remarkably influencing parameter, is precisely studied experimentally. Its effect on electronic band structure in the heterointerface is also proven by the theoretical simulations. In the end, a general conclusion of the whole work and room for further study and future work is discussed in Chapter 6. The ample freedom of structural nanoengineering in the materials, together with development of novel electron microscopy techniques, opens the way towards the new possibilities for the future work.

Nanoengineering of Structural, Functional and Smart Materials

Nanoengineering of Structural, Functional and Smart Materials PDF Author: Mark J. Schulz
Publisher: CRC Press
ISBN: 0203491963
Category : Technology & Engineering
Languages : en
Pages : 740

Get Book Here

Book Description
In chapters contributed by 24 university & government laboratories, Nanoengineering of Structural, Functional, and Smart Materials combines wide-ranging research aimed at the development of multifunctional materials that are strong, lightweight, and versatile. This book explores promising and diverse approaches to the design of nanoscale

Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future

Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future PDF Author: Wolfram Schommers
Publisher: World Scientific
ISBN: 9811243875
Category : Science
Languages : en
Pages : 466

Get Book Here

Book Description
With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

Topics In Nanoscience (In 2 Parts)

Topics In Nanoscience (In 2 Parts) PDF Author: Wolfram Schommers
Publisher: World Scientific
ISBN: 9811256136
Category : Science
Languages : en
Pages : 872

Get Book Here

Book Description
With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

Functional Nanomaterials

Functional Nanomaterials PDF Author: Wai-Yeung Wong
Publisher: John Wiley & Sons
ISBN: 3527347976
Category : Science
Languages : en
Pages : 564

Get Book Here

Book Description
Functional Nanomaterials Presents the most recent advances in the production and applications of various functional nanomaterials As new synthetic methods, characterization technologies, and nanomaterials (NMs) with novel physical and chemical properties are developed, researchers and scientists across disciplines need to keep pace with advancements in the dynamic field. Functional Nanomaterials: Synthesis, Properties, and Applications provides comprehensive coverage of fundamental concepts, synthetic methods, characterization technologies, device fabrication, performance evaluation, and both current and emerging applications. Contributions from leading scientists in academia and industry present research developments of novel functional nanomaterials including metal nanoparticles, two-dimensional nanomaterials, perovskite-based nanomaterials, and polymer-based nanomaterials and nanocomposites. Topics include metal-based nanomaterials for electrochemical water splitting, cerium-based nanostructure materials for electrocatalysis, applications of rare earth luminescent nanomaterials, metal complex nanosheets, and methods for synthesizing polymer nanocomposites. Provides readers with timely and accurate information on the development of functional nanomaterials in nanoscience and nanotechnology Presents a critical perspective of the design strategy, synthesis, and characterization of advanced functional nanomaterials Focuses on recent research developments in emerging areas with emphasis on fundamental concepts and applications Explores functional nanomaterials for applications in areas such as electrocatalysis, bioengineering, optoelectronics, and electrochemistry Covers a diverse range of nanomaterials, including carbonaceous nanomaterials, metal-based nanomaterials, transition metal dichalcogenides-based nanomaterials, semiconducting molecules, and magnetic nanoparticles Functional Nanomaterials is an invaluable resource for chemists, materials scientists, electronics engineers, bioengineers, and others in the scientific community working with nanomaterials in the fields of energy, electronics, and biomedicine.

Functional Nanomaterials

Functional Nanomaterials PDF Author: Kurt E. Geckeler
Publisher: Amer Scientific Pub
ISBN: 9781588830678
Category : Technology & Engineering
Languages : en
Pages : 488

Get Book Here

Book Description


Nanoengineering Materials for Biomedical Uses

Nanoengineering Materials for Biomedical Uses PDF Author: Emilio I. Alarcon
Publisher: Springer Nature
ISBN: 3030312615
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
This book fills the gap between fundamental and applied research in the use of nanomaterials in biomedical applications, covering the most relevant areas, such as the fundamental concepts of the preparation of nanostructures and regulatory requirements for their safe use in biomedical devices. It also critically discusses what has been achieved in the field, and what needs to be urgently addressed and reviews the state-of-the-art medical uses of nanomaterials for treating damaged organs and tissues. Combining the expertise of clinical researchers working in the field of tissue engineering and novel materials, the book explores the main topics regarding the characterization of materials, specific organ-oriented biomaterials and their applications, as well as regulations and safety. Further, it also examines recent advances, difficulties, and clinical requirements in terms of human bone, cornea, heart, skin and the nervous system, allowing readers to gain a clear and comprehensive understanding of current nanomaterial use in biomedical applications and devices, together with the challenges and future trends. This book is a valuable tool for multidisciplinary scientists and experts interested in fundamental concepts and synthetic routes for preparing nanomaterials. It is also of interest to students and researchers involved in cross-disciplinary research in nanomaterials for clinical applications and offers practical insights for clinicians as well as engineers and materials scientists working in nanoengineering.

Toward Functional Nanomaterials

Toward Functional Nanomaterials PDF Author: Zhiming M Wang
Publisher: Springer Science & Business Media
ISBN: 0387777172
Category : Technology & Engineering
Languages : en
Pages : 488

Get Book Here

Book Description
This book presents a detailed overview of recent research developments on functional nanomaterials, including synthesis, characterization, and applications. This state-of-the-art book is multidisciplinary in scope and international in authorship.

Handbook of Nanophysics

Handbook of Nanophysics PDF Author: Klaus D. Sattler
Publisher: CRC Press
ISBN: 1420075535
Category : Science
Languages : en
Pages : 790

Get Book Here

Book Description
Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color.This

Functionalized Nanomaterials II

Functionalized Nanomaterials II PDF Author: Vineet Kumar
Publisher: CRC Press
ISBN: 1351021362
Category : Technology & Engineering
Languages : en
Pages : 370

Get Book Here

Book Description
The functionalization of nanomaterials provides them with some unique properties, making the same nanomaterial amenable for various applications by simply manipulating functional components. However, functionalized nanomaterials also face some challenges, along with some encouraging new applications in the future. This book provides a detailed account of applications of the functionalization of nanomaterials. This book can serve as a reference book for scientific investigators, including doctoral and post-doctoral scholars and undergraduate and graduate students, in context with the scope of applications of functionalized nanomaterials. It also highlights recent advances, challenges, and opportunities in the application of nanomaterials. This book will provide critical and comparative data for nanotechnologists. It may also be beneficial for multidisciplinary researchers, industry personnel, journalists, policy makers, and the common public to understand the scope of functionalized nanomaterials in detail and in depth. Features: This book covers various applications of functionalized nanomaterials. It discusses recent global research trends and future applications of functionalized nanomaterials. It highlights the need for more rigorous regulatory frameworks for the safe use of functionalized nanomaterials. It contains contributions from international experts and will be a valuable resource for researchers.