Author: Alvar M. Kabe
Publisher: Academic Press
ISBN: 0128216204
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
The two-volume work, Structural Dynamics Fundamentals and Advanced Applications, is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. Volume I covers Newton's Laws, single-degree-of-freedom systems, damping, transfer and frequency response functions, transient vibration analysis (frequency and time domain), multi-degree-of-freedom systems, forced vibration of single and multi-degree-of-freedom systems, numerical methods for solving for the responses of single and multi-degree-of-freedom systems, and symmetric and non-symmetric eigenvalue problems. In addition, a thorough discussion of real and complex modes, and the conditions that lead to each is included. Stochastic methods for single and multi-degree-of-freedom systems excited by random forces or base motion are also covered. Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems. - The two-volume work was written with both practicing engineers and students just learning structural dynamics in mind - Derivations are rigorous and comprehensive, thus making understanding the material easier - Presents analysis methodologies adopted by the aerospace community to solve extremely complex structural dynamics problems
Structural Dynamics Fundamentals and Advanced Applications, Volume I
Author: Alvar M. Kabe
Publisher: Academic Press
ISBN: 0128216204
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
The two-volume work, Structural Dynamics Fundamentals and Advanced Applications, is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. Volume I covers Newton's Laws, single-degree-of-freedom systems, damping, transfer and frequency response functions, transient vibration analysis (frequency and time domain), multi-degree-of-freedom systems, forced vibration of single and multi-degree-of-freedom systems, numerical methods for solving for the responses of single and multi-degree-of-freedom systems, and symmetric and non-symmetric eigenvalue problems. In addition, a thorough discussion of real and complex modes, and the conditions that lead to each is included. Stochastic methods for single and multi-degree-of-freedom systems excited by random forces or base motion are also covered. Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems. - The two-volume work was written with both practicing engineers and students just learning structural dynamics in mind - Derivations are rigorous and comprehensive, thus making understanding the material easier - Presents analysis methodologies adopted by the aerospace community to solve extremely complex structural dynamics problems
Publisher: Academic Press
ISBN: 0128216204
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
The two-volume work, Structural Dynamics Fundamentals and Advanced Applications, is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. Volume I covers Newton's Laws, single-degree-of-freedom systems, damping, transfer and frequency response functions, transient vibration analysis (frequency and time domain), multi-degree-of-freedom systems, forced vibration of single and multi-degree-of-freedom systems, numerical methods for solving for the responses of single and multi-degree-of-freedom systems, and symmetric and non-symmetric eigenvalue problems. In addition, a thorough discussion of real and complex modes, and the conditions that lead to each is included. Stochastic methods for single and multi-degree-of-freedom systems excited by random forces or base motion are also covered. Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems. - The two-volume work was written with both practicing engineers and students just learning structural dynamics in mind - Derivations are rigorous and comprehensive, thus making understanding the material easier - Presents analysis methodologies adopted by the aerospace community to solve extremely complex structural dynamics problems
Structural Dynamics Fundamentals and Advanced Applications, Volume II
Author: Alvar M. Kabe
Publisher: Academic Press
ISBN: 0128216212
Category : Technology & Engineering
Languages : en
Pages : 974
Book Description
The two-volume Structural Dynamics Fundamentals and Advanced Applications is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. In Volume II, d'Alembert's Principle, Hamilton's Principle, and Lagrange's Equations are derived from fundamental principles. Development of large structural dynamic models and fluid/structure interaction are thoroughly covered. Responses to turbulence/gust, buffet, and static-aeroelastic loading encountered during atmospheric flight are addressed from fundamental principles to the final equations, including aeroelasticity. Volume II also includes a detailed discussion of mode survey testing, mode parameter identification, and analytical model adjustment. Analysis of time signals, including digitization, filtering, and transform computation is also covered. A comprehensive discussion of probability and statistics, including statistics of time series, small sample statistics, and the combination of responses whose statistical distributions are different, is included. Volume II concludes with an extensive chapter on continuous systems; including the classical derivations and solutions for strings, membranes, beams, and plates, as well as the derivation and closed form solutions for rotating disks and sloshing of fluids in rectangular and cylindrical tanks. Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems. - The two-volume work was written with both practicing engineers and students just learning structural dynamics in mind - Derivations are rigorous and comprehensive, thus making understanding the material easier - Presents analysis methodologies adopted by the aerospace community to solve complex structural dynamics problems
Publisher: Academic Press
ISBN: 0128216212
Category : Technology & Engineering
Languages : en
Pages : 974
Book Description
The two-volume Structural Dynamics Fundamentals and Advanced Applications is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. In Volume II, d'Alembert's Principle, Hamilton's Principle, and Lagrange's Equations are derived from fundamental principles. Development of large structural dynamic models and fluid/structure interaction are thoroughly covered. Responses to turbulence/gust, buffet, and static-aeroelastic loading encountered during atmospheric flight are addressed from fundamental principles to the final equations, including aeroelasticity. Volume II also includes a detailed discussion of mode survey testing, mode parameter identification, and analytical model adjustment. Analysis of time signals, including digitization, filtering, and transform computation is also covered. A comprehensive discussion of probability and statistics, including statistics of time series, small sample statistics, and the combination of responses whose statistical distributions are different, is included. Volume II concludes with an extensive chapter on continuous systems; including the classical derivations and solutions for strings, membranes, beams, and plates, as well as the derivation and closed form solutions for rotating disks and sloshing of fluids in rectangular and cylindrical tanks. Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems. - The two-volume work was written with both practicing engineers and students just learning structural dynamics in mind - Derivations are rigorous and comprehensive, thus making understanding the material easier - Presents analysis methodologies adopted by the aerospace community to solve complex structural dynamics problems
Structural Dynamics Fundamentals and Advanced Applications, Volume II
Author: Alvar M. Kabe
Publisher: Academic Press
ISBN: 0128216158
Category : Technology & Engineering
Languages : en
Pages : 972
Book Description
The two-volume Structural Dynamics Fundamentals and Advanced Applications is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. In Volume II, d'Alembert's Principle, Hamilton's Principle, and Lagrange's Equations are derived from fundamental principles. Development of large structural dynamic models and fluid/structure interaction are thoroughly covered. Responses to turbulence/gust, buffet, and static-aeroelastic loading encountered during atmospheric flight are addressed from fundamental principles to the final equations, including aeroelasticity. Volume II also includes a detailed discussion of mode survey testing, mode parameter identification, and analytical model adjustment. Analysis of time signals, including digitization, filtering, and transform computation is also covered. A comprehensive discussion of probability and statistics, including statistics of time series, small sample statistics, and the combination of responses whose statistical distributions are different, is included. Volume II concludes with an extensive chapter on continuous systems; including the classical derivations and solutions for strings, membranes, beams, and plates, as well as the derivation and closed form solutions for rotating disks and sloshing of fluids in rectangular and cylindrical tanks. Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems.
Publisher: Academic Press
ISBN: 0128216158
Category : Technology & Engineering
Languages : en
Pages : 972
Book Description
The two-volume Structural Dynamics Fundamentals and Advanced Applications is a comprehensive work that encompasses the fundamentals of structural dynamics and vibration analysis, as well as advanced applications used on extremely large and complex systems. In Volume II, d'Alembert's Principle, Hamilton's Principle, and Lagrange's Equations are derived from fundamental principles. Development of large structural dynamic models and fluid/structure interaction are thoroughly covered. Responses to turbulence/gust, buffet, and static-aeroelastic loading encountered during atmospheric flight are addressed from fundamental principles to the final equations, including aeroelasticity. Volume II also includes a detailed discussion of mode survey testing, mode parameter identification, and analytical model adjustment. Analysis of time signals, including digitization, filtering, and transform computation is also covered. A comprehensive discussion of probability and statistics, including statistics of time series, small sample statistics, and the combination of responses whose statistical distributions are different, is included. Volume II concludes with an extensive chapter on continuous systems; including the classical derivations and solutions for strings, membranes, beams, and plates, as well as the derivation and closed form solutions for rotating disks and sloshing of fluids in rectangular and cylindrical tanks. Dr. Kabe's training and expertise are in structural dynamics and Dr. Sako's are in applied mathematics. Their collaboration has led to the development of first-of-a-kind methodologies and solutions to complex structural dynamics problems. Their experience and contributions encompass numerous past and currently operational launch and space systems.
Fundamentals of Structural Dynamics
Author: Roy R. Craig, Jr.
Publisher: John Wiley & Sons
ISBN: 1118174445
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
FUNDAMENTALS OF STRUCTURAL DYNAMICS From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics. This edition updates Professor Craig’s classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element–based computational methods, and dynamic testing methods, this Second Edition includes new and expanded coverage of computational methods, as well as introductions to more advanced topics, including experimental modal analysis and “active structures.” With a systematic approach, it presents solution techniques that apply to various engineering disciplines. It discusses single degree-of-freedom (SDOF) systems, multiple degrees-of-freedom (MDOF) systems, and continuous systems in depth; and includes numeric evaluation of modes and frequency of MDOF systems; direct integration methods for dynamic response of SDOF systems and MDOF systems; and component mode synthesis. Numerous illustrative examples help engineers apply the techniques and methods to challenges they face in the real world. MATLAB® is extensively used throughout the book, and many of the .m-files are made available on the book’s Web site. Fundamentals of Structural Dynamics, Second Edition is an indispensable reference and “refresher course” for engineering professionals; and a textbook for seniors or graduate students in mechanical engineering, civil engineering, engineering mechanics, or aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 1118174445
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
FUNDAMENTALS OF STRUCTURAL DYNAMICS From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics. This edition updates Professor Craig’s classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element–based computational methods, and dynamic testing methods, this Second Edition includes new and expanded coverage of computational methods, as well as introductions to more advanced topics, including experimental modal analysis and “active structures.” With a systematic approach, it presents solution techniques that apply to various engineering disciplines. It discusses single degree-of-freedom (SDOF) systems, multiple degrees-of-freedom (MDOF) systems, and continuous systems in depth; and includes numeric evaluation of modes and frequency of MDOF systems; direct integration methods for dynamic response of SDOF systems and MDOF systems; and component mode synthesis. Numerous illustrative examples help engineers apply the techniques and methods to challenges they face in the real world. MATLAB® is extensively used throughout the book, and many of the .m-files are made available on the book’s Web site. Fundamentals of Structural Dynamics, Second Edition is an indispensable reference and “refresher course” for engineering professionals; and a textbook for seniors or graduate students in mechanical engineering, civil engineering, engineering mechanics, or aerospace engineering.
Dynamics of Structures
Author: Levon Gregory Petrosian
Publisher: Springer Nature
ISBN: 3031635396
Category :
Languages : en
Pages : 613
Book Description
Publisher: Springer Nature
ISBN: 3031635396
Category :
Languages : en
Pages : 613
Book Description
Advanced Structural Dynamics
Author: Eduardo Kausel
Publisher: Cambridge University Press
ISBN: 1316772926
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Developed from three decades' worth of lecture notes which the author used to teach at the Massachusetts Institute of Technology, this unique textbook presents a comprehensive treatment of structural dynamics and mechanical vibration. The chapters in this book are self-contained so that instructors can choose to be selective about which topics they teach. Written with an application-based focus, the text covers topics such as earthquake engineering, soil dynamics, and relevant numerical methods techniques that use MATLAB. Advanced topics such as the Hilbert transform, gyroscope forces, and spatially periodic structures are also treated extensively. Concise enough for an introductory course yet rigorous enough for an advanced or graduate-level course, this textbook is also a useful reference manual - even after the final exam - for professional and practicing engineers.
Publisher: Cambridge University Press
ISBN: 1316772926
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Developed from three decades' worth of lecture notes which the author used to teach at the Massachusetts Institute of Technology, this unique textbook presents a comprehensive treatment of structural dynamics and mechanical vibration. The chapters in this book are self-contained so that instructors can choose to be selective about which topics they teach. Written with an application-based focus, the text covers topics such as earthquake engineering, soil dynamics, and relevant numerical methods techniques that use MATLAB. Advanced topics such as the Hilbert transform, gyroscope forces, and spatially periodic structures are also treated extensively. Concise enough for an introductory course yet rigorous enough for an advanced or graduate-level course, this textbook is also a useful reference manual - even after the final exam - for professional and practicing engineers.
Computational Structural Dynamics and Earthquake Engineering
Author: Manolis Papadrakakis
Publisher: CRC Press
ISBN: 020388163X
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam
Publisher: CRC Press
ISBN: 020388163X
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam
Vibration Analysis and Structural Dynamics for Civil Engineers
Author: Alphose Zingoni
Publisher: CRC Press
ISBN: 1482264072
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.
Publisher: CRC Press
ISBN: 1482264072
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.
Dynamics of Structure and Foundation - A Unified Approach
Author: Indrajit Chowdhury
Publisher: CRC Press
ISBN: 0203885279
Category : Technology & Engineering
Languages : en
Pages : 882
Book Description
Designed to provide engineers with quick access to current and practical information on the dynamics of structure and foundation, this unique work, consisting of two separately available volumes, serves as a complete reference, especially for those involved with earthquake or dynamic analysis, or the design of machine foundations in the oil, gas, a
Publisher: CRC Press
ISBN: 0203885279
Category : Technology & Engineering
Languages : en
Pages : 882
Book Description
Designed to provide engineers with quick access to current and practical information on the dynamics of structure and foundation, this unique work, consisting of two separately available volumes, serves as a complete reference, especially for those involved with earthquake or dynamic analysis, or the design of machine foundations in the oil, gas, a
Structural Dynamics
Author: Mario Paz
Publisher: Springer Science & Business Media
ISBN: 1468400185
Category : Technology & Engineering
Languages : en
Pages : 836
Book Description
The use of COSMOS for the analysis and solution of structural dynamics problems is introduced in this new edition. The COSMOS program was selected from among the various professional programs available because it has the capability of solving complex problems in structures, as well as in other engin eering fields such as Heat Transfer, Fluid Flow, and Electromagnetic Phenom ena. COSMOS includes routines for Structural Analysis, Static, or Dynamics with linear or nonlinear behavior (material nonlinearity or large displacements), and can be used most efficiently in the microcomputer. The larger version of COSMOS has the capacity for the analysis of structures modeled up to 64,000 nodes. This fourth edition uses an introductory version that has a capability limited to 50 nodes or 50 elements. This version is included in the supplement, STRUCTURAL DYNAMICS USING COSMOS 1. The sets of educational programs in Structural Dynamics and Earthquake Engineering that accompanied the third edition have now been extended and updated. These sets include programs to determine the response in the time or frequency domain using the FFf (Fast Fourier Transform) of structures modeled as a single oscillator. Also included is a program to determine the response of an inelastic system with elastoplastic behavior and a program for the development of seismic response spectral charts. A set of seven computer programs is included for modeling structures as two-dimensional and three dimensional frames and trusses.
Publisher: Springer Science & Business Media
ISBN: 1468400185
Category : Technology & Engineering
Languages : en
Pages : 836
Book Description
The use of COSMOS for the analysis and solution of structural dynamics problems is introduced in this new edition. The COSMOS program was selected from among the various professional programs available because it has the capability of solving complex problems in structures, as well as in other engin eering fields such as Heat Transfer, Fluid Flow, and Electromagnetic Phenom ena. COSMOS includes routines for Structural Analysis, Static, or Dynamics with linear or nonlinear behavior (material nonlinearity or large displacements), and can be used most efficiently in the microcomputer. The larger version of COSMOS has the capacity for the analysis of structures modeled up to 64,000 nodes. This fourth edition uses an introductory version that has a capability limited to 50 nodes or 50 elements. This version is included in the supplement, STRUCTURAL DYNAMICS USING COSMOS 1. The sets of educational programs in Structural Dynamics and Earthquake Engineering that accompanied the third edition have now been extended and updated. These sets include programs to determine the response in the time or frequency domain using the FFf (Fast Fourier Transform) of structures modeled as a single oscillator. Also included is a program to determine the response of an inelastic system with elastoplastic behavior and a program for the development of seismic response spectral charts. A set of seven computer programs is included for modeling structures as two-dimensional and three dimensional frames and trusses.