Stochastic Tools in Turbulence

Stochastic Tools in Turbulence PDF Author: John L. Lumey
Publisher: Elsevier
ISBN: 0323162258
Category : Mathematics
Languages : en
Pages : 209

Get Book

Book Description
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the characteristic function, and the Gaussian distribution from a more physical point of view. In considering fields, one must account for single-valued functions of one or more parameters, or collections of single-valued functions of one or more parameters such as time or space coordinates. The text also discusses multidimensional vector fields of finite energy, the characteristic eddies for a homogenous vector field, as well as, the distribution of solutions of an algebraic equation. Engineers, algebra students, and professors of statistics and advanced mathematics will find the book highly useful.

Stochastic Tools in Turbulence

Stochastic Tools in Turbulence PDF Author: John L. Lumey
Publisher: Elsevier
ISBN: 0323162258
Category : Mathematics
Languages : en
Pages : 209

Get Book

Book Description
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the characteristic function, and the Gaussian distribution from a more physical point of view. In considering fields, one must account for single-valued functions of one or more parameters, or collections of single-valued functions of one or more parameters such as time or space coordinates. The text also discusses multidimensional vector fields of finite energy, the characteristic eddies for a homogenous vector field, as well as, the distribution of solutions of an algebraic equation. Engineers, algebra students, and professors of statistics and advanced mathematics will find the book highly useful.

Stochastic Tools in Turbulence

Stochastic Tools in Turbulence PDF Author: John L. Lumley
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book

Book Description


Turbulence

Turbulence PDF Author: Uriel Frisch
Publisher: Cambridge University Press
ISBN: 9780521457132
Category : Science
Languages : en
Pages : 314

Get Book

Book Description
This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such "fully developed turbulence" is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system. Kolmogorov's 1941 theory is presented in a novel fashion with emphasis on symmetries (including scaling transformations) which are broken by the mechanisms producing the turbulence and restored by the chaotic character of the cascade to small scales. Considerable material is devoted to intermittency, the clumpiness of small-scale activity, which has led to the development of fractal and multifractal models. Such models, pioneered by B. Mandelbrot, have applications in numerous fields besides turbulence (diffusion limited aggregation, solid-earth geophysics, attractors of dynamical systems, etc). The final chapter contains an introduction to analytic theories of the sort pioneered by R. Kraichnan, to the modern theory of eddy transport and renormalization and to recent developments in the statistical theory of two-dimensional turbulence. The book concludes with a guide to further reading. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers.

Stochastic Tools in Mathematics and Science

Stochastic Tools in Mathematics and Science PDF Author: Alexandre Joel Chorin
Publisher:
ISBN: 9781461469810
Category :
Languages : en
Pages : 214

Get Book

Book Description


Stochastic Tools in Mathematics and Science

Stochastic Tools in Mathematics and Science PDF Author: Alexandre J Chorin
Publisher: Springer Science & Business Media
ISBN: 9780387280806
Category : Mathematics
Languages : en
Pages : 164

Get Book

Book Description
This introduction to probability-based modeling covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. Topics covered include conditional expectations, stochastic processes, Langevin equations, and Markov chain Monte Carlo algorithms. The applications include data assimilation, prediction from partial data, spectral analysis and turbulence. A special feature is the systematic analysis of memory effects.

Statistical Mechanics of Turbulent Flows

Statistical Mechanics of Turbulent Flows PDF Author: Stefan Heinz
Publisher: Springer Science & Business Media
ISBN: 3662100223
Category : Science
Languages : en
Pages : 232

Get Book

Book Description
The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .

Stochastic Methods in Hydrology

Stochastic Methods in Hydrology PDF Author: Ole E. Barndorff-Nielsen
Publisher: World Scientific
ISBN: 9789810233679
Category : Science
Languages : en
Pages : 234

Get Book

Book Description
This book communicates some contemporary mathematical and statistical developments in river basin hydrology as they pertain to space-time rainfall, spatial landform and network structures and their role in understanding averages and fluctuations in the hydrologic water balance of river basins. While many of the mathematical and statistical nations have quite classical mathematical roots, the river basin data structure has led to many variations on the problems and theory.

Stochastic Methods in Fluid Mechanics

Stochastic Methods in Fluid Mechanics PDF Author: Sergio Chibbaro
Publisher: Springer Science & Business Media
ISBN: 3709116228
Category : Technology & Engineering
Languages : en
Pages : 175

Get Book

Book Description
Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechanics and notably dispersed two-phase flows. The aim is to develop what can referred to as stochastic modeling for a whole range of applications.

Turbulence and Atomization and Sprays

Turbulence and Atomization and Sprays PDF Author: Mikhael Gorokhovski
Publisher: Iste Press - Elsevier
ISBN: 9781785481109
Category : Technology & Engineering
Languages : en
Pages : 250

Get Book

Book Description


An Introduction to Turbulent Flow

An Introduction to Turbulent Flow PDF Author: Jean Mathieu
Publisher: Cambridge University Press
ISBN: 9780521775380
Category : Science
Languages : en
Pages : 388

Get Book

Book Description
Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, attracting many newcomers who need a basic introduction to the subject. An Introduction to Turbulent Flow, first published in 2000, offers a solid grounding in the subject of turbulence, developing both physical insight and the mathematical framework needed to express the theory. It begins with a review of the physical nature of turbulence, statistical tools, and space and time scales of turbulence. Basic theory is presented next, illustrated by examples of simple turbulent flows and developed through classical models of jets, wakes, and boundary layers. A deeper understanding of turbulence dynamics is provided by spectral analysis and its applications. The final chapter introduces the numerical simulation of turbulent flows. This well-balanced text will interest graduate students in engineering, applied mathematics, and the physical sciences.