Author: John L. Lumey
Publisher: Elsevier
ISBN: 0323162258
Category : Mathematics
Languages : en
Pages : 209
Book Description
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the characteristic function, and the Gaussian distribution from a more physical point of view. In considering fields, one must account for single-valued functions of one or more parameters, or collections of single-valued functions of one or more parameters such as time or space coordinates. The text also discusses multidimensional vector fields of finite energy, the characteristic eddies for a homogenous vector field, as well as, the distribution of solutions of an algebraic equation. Engineers, algebra students, and professors of statistics and advanced mathematics will find the book highly useful.
Stochastic Tools in Turbulence
Author: John L. Lumey
Publisher: Elsevier
ISBN: 0323162258
Category : Mathematics
Languages : en
Pages : 209
Book Description
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the characteristic function, and the Gaussian distribution from a more physical point of view. In considering fields, one must account for single-valued functions of one or more parameters, or collections of single-valued functions of one or more parameters such as time or space coordinates. The text also discusses multidimensional vector fields of finite energy, the characteristic eddies for a homogenous vector field, as well as, the distribution of solutions of an algebraic equation. Engineers, algebra students, and professors of statistics and advanced mathematics will find the book highly useful.
Publisher: Elsevier
ISBN: 0323162258
Category : Mathematics
Languages : en
Pages : 209
Book Description
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the characteristic function, and the Gaussian distribution from a more physical point of view. In considering fields, one must account for single-valued functions of one or more parameters, or collections of single-valued functions of one or more parameters such as time or space coordinates. The text also discusses multidimensional vector fields of finite energy, the characteristic eddies for a homogenous vector field, as well as, the distribution of solutions of an algebraic equation. Engineers, algebra students, and professors of statistics and advanced mathematics will find the book highly useful.
Stochastic Tools in Turbulence
Author: John L. Lumley
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Stochastic Tools in Mathematics and Science
Author: Alexandre J. Chorin
Publisher: Springer Science & Business Media
ISBN: 1441910026
Category : Mathematics
Languages : en
Pages : 169
Book Description
This introduction to probability-based modeling covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. Topics covered include conditional expectations, stochastic processes, Langevin equations, and Markov chain Monte Carlo algorithms. The applications include data assimilation, prediction from partial data, spectral analysis and turbulence. A special feature is the systematic analysis of memory effects.
Publisher: Springer Science & Business Media
ISBN: 1441910026
Category : Mathematics
Languages : en
Pages : 169
Book Description
This introduction to probability-based modeling covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. Topics covered include conditional expectations, stochastic processes, Langevin equations, and Markov chain Monte Carlo algorithms. The applications include data assimilation, prediction from partial data, spectral analysis and turbulence. A special feature is the systematic analysis of memory effects.
Stochastic Dynamics of Structures
Author: Jie Li
Publisher: John Wiley & Sons
ISBN: 0470824255
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
In Stochastic Dynamics of Structures, Li and Chen present a unified view of the theory and techniques for stochastic dynamics analysis, prediction of reliability, and system control of structures within the innovative theoretical framework of physical stochastic systems. The authors outline the fundamental concepts of random variables, stochastic process and random field, and orthogonal expansion of random functions. Readers will gain insight into core concepts such as stochastic process models for typical dynamic excitations of structures, stochastic finite element, and random vibration analysis. Li and Chen also cover advanced topics, including the theory of and elaborate numerical methods for probability density evolution analysis of stochastic dynamical systems, reliability-based design, and performance control of structures. Stochastic Dynamics of Structures presents techniques for researchers and graduate students in a wide variety of engineering fields: civil engineering, mechanical engineering, aerospace and aeronautics, marine and offshore engineering, ship engineering, and applied mechanics. Practicing engineers will benefit from the concise review of random vibration theory and the new methods introduced in the later chapters. "The book is a valuable contribution to the continuing development of the field of stochastic structural dynamics, including the recent discoveries and developments by the authors of the probability density evolution method (PDEM) and its applications to the assessment of the dynamic reliability and control of complex structures through the equivalent extreme-value distribution." —A. H-S. Ang, NAE, Hon. Mem. ASCE, Research Professor, University of California, Irvine, USA "The authors have made a concerted effort to present a responsible and even holistic account of modern stochastic dynamics. Beyond the traditional concepts, they also discuss theoretical tools of recent currency such as the Karhunen-Loeve expansion, evolutionary power spectra, etc. The theoretical developments are properly supplemented by examples from earthquake, wind, and ocean engineering. The book is integrated by also comprising several useful appendices, and an exhaustive list of references; it will be an indispensable tool for students, researchers, and practitioners endeavoring in its thematic field." —Pol Spanos, NAE, Ryon Chair in Engineering, Rice University, Houston, USA
Publisher: John Wiley & Sons
ISBN: 0470824255
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
In Stochastic Dynamics of Structures, Li and Chen present a unified view of the theory and techniques for stochastic dynamics analysis, prediction of reliability, and system control of structures within the innovative theoretical framework of physical stochastic systems. The authors outline the fundamental concepts of random variables, stochastic process and random field, and orthogonal expansion of random functions. Readers will gain insight into core concepts such as stochastic process models for typical dynamic excitations of structures, stochastic finite element, and random vibration analysis. Li and Chen also cover advanced topics, including the theory of and elaborate numerical methods for probability density evolution analysis of stochastic dynamical systems, reliability-based design, and performance control of structures. Stochastic Dynamics of Structures presents techniques for researchers and graduate students in a wide variety of engineering fields: civil engineering, mechanical engineering, aerospace and aeronautics, marine and offshore engineering, ship engineering, and applied mechanics. Practicing engineers will benefit from the concise review of random vibration theory and the new methods introduced in the later chapters. "The book is a valuable contribution to the continuing development of the field of stochastic structural dynamics, including the recent discoveries and developments by the authors of the probability density evolution method (PDEM) and its applications to the assessment of the dynamic reliability and control of complex structures through the equivalent extreme-value distribution." —A. H-S. Ang, NAE, Hon. Mem. ASCE, Research Professor, University of California, Irvine, USA "The authors have made a concerted effort to present a responsible and even holistic account of modern stochastic dynamics. Beyond the traditional concepts, they also discuss theoretical tools of recent currency such as the Karhunen-Loeve expansion, evolutionary power spectra, etc. The theoretical developments are properly supplemented by examples from earthquake, wind, and ocean engineering. The book is integrated by also comprising several useful appendices, and an exhaustive list of references; it will be an indispensable tool for students, researchers, and practitioners endeavoring in its thematic field." —Pol Spanos, NAE, Ryon Chair in Engineering, Rice University, Houston, USA
Turbulence and Diffusion
Author: Oleg G. Bakunin
Publisher: Springer Science & Business Media
ISBN: 3540682228
Category : Science
Languages : en
Pages : 269
Book Description
This book is intended to serve as an introduction to the multidisciplinary ?eld of anomalous diffusion in complex systems such as turbulent plasma, convective rolls, zonal ?ow systems, stochastic magnetic ?elds, etc. In spite of its great importance, turbulent transport has received comparatively little treatment in published mo- graphs. This book attempts a comprehensive description of the scaling approach to turbulent diffusion. From the methodological point of view, the book focuses on the general use of correlation estimates, quasilinear equations, and continuous time random walk - proach. I provide a detailed structure of some derivations when they may be useful for more general purposes. Correlation methods are ?exible tools to obtain tra- port scalings that give priority to the richness of ingredients in a physical pr- lem. The mathematical description developed here is not meant to provide a set of “recipes” for hydrodynamical turbulence or plasma turbulence; rather, it serves to develop the reader’s physical intuition and understanding of the correlation mec- nisms involved.
Publisher: Springer Science & Business Media
ISBN: 3540682228
Category : Science
Languages : en
Pages : 269
Book Description
This book is intended to serve as an introduction to the multidisciplinary ?eld of anomalous diffusion in complex systems such as turbulent plasma, convective rolls, zonal ?ow systems, stochastic magnetic ?elds, etc. In spite of its great importance, turbulent transport has received comparatively little treatment in published mo- graphs. This book attempts a comprehensive description of the scaling approach to turbulent diffusion. From the methodological point of view, the book focuses on the general use of correlation estimates, quasilinear equations, and continuous time random walk - proach. I provide a detailed structure of some derivations when they may be useful for more general purposes. Correlation methods are ?exible tools to obtain tra- port scalings that give priority to the richness of ingredients in a physical pr- lem. The mathematical description developed here is not meant to provide a set of “recipes” for hydrodynamical turbulence or plasma turbulence; rather, it serves to develop the reader’s physical intuition and understanding of the correlation mec- nisms involved.
Turbulence in the Atmosphere
Author: John C. Wyngaard
Publisher: Cambridge University Press
ISBN: 1139485520
Category : Science
Languages : en
Pages : 407
Book Description
Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.
Publisher: Cambridge University Press
ISBN: 1139485520
Category : Science
Languages : en
Pages : 407
Book Description
Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.
One-Dimensional Turbulence and the Stochastic Burgers Equation
Author: Alexandre Boritchev
Publisher: American Mathematical Soc.
ISBN: 1470464365
Category : Education
Languages : en
Pages : 192
Book Description
This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3 2/3-law, and the Kolmogorov–Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L 1 L1-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.
Publisher: American Mathematical Soc.
ISBN: 1470464365
Category : Education
Languages : en
Pages : 192
Book Description
This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3 2/3-law, and the Kolmogorov–Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L 1 L1-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.
Turbulence in Fluids
Author: Marcel Lesieur
Publisher: Springer Science & Business Media
ISBN: 9400905335
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Turbulence is a dangerous topic which is often at the origin of serious fights in the scientific meetings devoted to it since it represents extremely different points of view, all of which have in common their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved. Extremely schematically, two opposing points of view have been advocated during these last ten years: the first one is "statistical", and tries to model the evolution of averaged quantities of the flow. This com has followed the glorious trail of Taylor and Kolmogorov, munity, which believes in the phenomenology of cascades, and strongly disputes the possibility of any coherence or order associated to turbulence. On the other bank of the river stands the "coherence among chaos" community, which considers turbulence from a purely deterministic po int of view, by studying either the behaviour of dynamical systems, or the stability of flows in various situations. To this community are also associated the experimentalists who seek to identify coherent structures in shear flows.
Publisher: Springer Science & Business Media
ISBN: 9400905335
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Turbulence is a dangerous topic which is often at the origin of serious fights in the scientific meetings devoted to it since it represents extremely different points of view, all of which have in common their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved. Extremely schematically, two opposing points of view have been advocated during these last ten years: the first one is "statistical", and tries to model the evolution of averaged quantities of the flow. This com has followed the glorious trail of Taylor and Kolmogorov, munity, which believes in the phenomenology of cascades, and strongly disputes the possibility of any coherence or order associated to turbulence. On the other bank of the river stands the "coherence among chaos" community, which considers turbulence from a purely deterministic po int of view, by studying either the behaviour of dynamical systems, or the stability of flows in various situations. To this community are also associated the experimentalists who seek to identify coherent structures in shear flows.
Turbulence and Random Processes in Fluid Mechanics
Author: M. T. Landahl
Publisher: Cambridge University Press
ISBN: 9780521422130
Category : Mathematics
Languages : en
Pages : 184
Book Description
Fluid flow turbulence is a phenomenon of great importance in many fields of engineering and science.
Publisher: Cambridge University Press
ISBN: 9780521422130
Category : Mathematics
Languages : en
Pages : 184
Book Description
Fluid flow turbulence is a phenomenon of great importance in many fields of engineering and science.
Non-equilibrium Statistical Mechanics and Turbulence
Author: John Cardy
Publisher: Cambridge University Press
ISBN: 9780521715140
Category : Mathematics
Languages : en
Pages : 180
Book Description
This self-contained volume introduces modern methods of statistical mechanics in turbulence, with three harmonised lecture courses by world class experts.
Publisher: Cambridge University Press
ISBN: 9780521715140
Category : Mathematics
Languages : en
Pages : 180
Book Description
This self-contained volume introduces modern methods of statistical mechanics in turbulence, with three harmonised lecture courses by world class experts.