Author: Heinz-Peter Breuer
Publisher: Oxford University Press, USA
ISBN: 9780198520634
Category : Mathematics
Languages : en
Pages : 648
Book Description
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.
The Theory of Open Quantum Systems
Author: Heinz-Peter Breuer
Publisher: Oxford University Press, USA
ISBN: 9780198520634
Category : Mathematics
Languages : en
Pages : 648
Book Description
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.
Publisher: Oxford University Press, USA
ISBN: 9780198520634
Category : Mathematics
Languages : en
Pages : 648
Book Description
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.
Open Quantum Systems II
Author: Stéphane Attal
Publisher: Springer
ISBN: 3540339663
Category : Mathematics
Languages : en
Pages : 254
Book Description
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.
Publisher: Springer
ISBN: 3540339663
Category : Mathematics
Languages : en
Pages : 254
Book Description
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.
Quantum Noise
Author: Crispin W. Gardiner
Publisher: Springer Verlag
ISBN: 9783540665717
Category : Josephson junctions
Languages : en
Pages : 0
Book Description
This book offers a systematic and comprehensive exposition of the quantum stochastic methods that have been developed in the field of quantum optics. It includes new treatments of photodetection, quantum amplifier theory, non-Markovian quantum stochastic processes, quantum input--output theory, and positive P-representations. It is the first book in which quantum noise is described by a mathematically complete theory in a form that is also suited to practical applications. Special attention is paid to non-classical effects, such as squeezing and antibunching. This second edition has been enlarged so as to take account of rapid progress in the field, and now includes two additional chapters on the stochastic SchrAdinger equation, and on cascaded quantum systems.
Publisher: Springer Verlag
ISBN: 9783540665717
Category : Josephson junctions
Languages : en
Pages : 0
Book Description
This book offers a systematic and comprehensive exposition of the quantum stochastic methods that have been developed in the field of quantum optics. It includes new treatments of photodetection, quantum amplifier theory, non-Markovian quantum stochastic processes, quantum input--output theory, and positive P-representations. It is the first book in which quantum noise is described by a mathematically complete theory in a form that is also suited to practical applications. Special attention is paid to non-classical effects, such as squeezing and antibunching. This second edition has been enlarged so as to take account of rapid progress in the field, and now includes two additional chapters on the stochastic SchrAdinger equation, and on cascaded quantum systems.
Quantum Noise
Author: Crispin Gardiner
Publisher: Springer Science & Business Media
ISBN: 9783540223016
Category : Science
Languages : en
Pages : 476
Book Description
This book offers a systematic and comprehensive exposition of the quantum stochastic methods that have been developed in the field of quantum optics. It includes new treatments of photodetection, quantum amplifier theory, non-Markovian quantum stochastic processes, quantum input--output theory, and positive P-representations. It is the first book in which quantum noise is described by a mathematically complete theory in a form that is also suited to practical applications. Special attention is paid to non-classical effects, such as squeezing and antibunching. Chapters added to the previous edition, on the stochastic Schrödinger equation, and on cascaded quantum systems, and now supplemented, in the third edition by a chapter on recent developments in various pertinent fields such as laser cooling, Bose-Einstein condensation, quantum feedback and quantum information.
Publisher: Springer Science & Business Media
ISBN: 9783540223016
Category : Science
Languages : en
Pages : 476
Book Description
This book offers a systematic and comprehensive exposition of the quantum stochastic methods that have been developed in the field of quantum optics. It includes new treatments of photodetection, quantum amplifier theory, non-Markovian quantum stochastic processes, quantum input--output theory, and positive P-representations. It is the first book in which quantum noise is described by a mathematically complete theory in a form that is also suited to practical applications. Special attention is paid to non-classical effects, such as squeezing and antibunching. Chapters added to the previous edition, on the stochastic Schrödinger equation, and on cascaded quantum systems, and now supplemented, in the third edition by a chapter on recent developments in various pertinent fields such as laser cooling, Bose-Einstein condensation, quantum feedback and quantum information.
Quantum Stochastic Thermodynamics
Author: Philipp Strasberg
Publisher: Oxford University Press
ISBN: 0192895583
Category : Science
Languages : en
Pages : 337
Book Description
The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.
Publisher: Oxford University Press
ISBN: 0192895583
Category : Science
Languages : en
Pages : 337
Book Description
The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.
Open Quantum Systems III
Author: Stéphane Attal
Publisher: Springer
ISBN: 3540339671
Category : Mathematics
Languages : en
Pages : 326
Book Description
This volume is the third and last of a series devoted to the lecture notes of the Grenoble Summer School on “Open Quantum Systems” which took place at the th th Institut Fourier from June 16 to July 4 2003. The contributions presented in this volumecorrespondtoexpanded versionsofthelecturenotesprovidedbytheauthors to the students of the Summer School. The corresponding lectures were scheduled in the last part of the School devoted to recent developments in the study of Open Quantum Systems. Whereas the rst two volumes were dedicated to a detailed exposition of the mathematical techniques and physical concepts relevant in the study of Open S- tems with noapriori pre-requisites, the contributions presented in this volume request from the reader some familiarity with these aspects. Indeed, the material presented here aims at leading the reader already acquainted with the basics in ? quantum statistical mechanics, spectral theory of linear operators,C -dynamical systems, and quantum stochastic differential equations to the front of the current research done on various aspects of Open Quantum Systems. Nevertheless, pe- gogical efforts have been made by the various authors of these notes so that this volume should be essentially self-contained for a reader with minimal previous - posure to the themes listed above. In any case, the reader in need of complements can always turn to these rst two volumes. The topics covered in these lectures notes start with an introduction to n- equilibrium quantum statistical mechanics.
Publisher: Springer
ISBN: 3540339671
Category : Mathematics
Languages : en
Pages : 326
Book Description
This volume is the third and last of a series devoted to the lecture notes of the Grenoble Summer School on “Open Quantum Systems” which took place at the th th Institut Fourier from June 16 to July 4 2003. The contributions presented in this volumecorrespondtoexpanded versionsofthelecturenotesprovidedbytheauthors to the students of the Summer School. The corresponding lectures were scheduled in the last part of the School devoted to recent developments in the study of Open Quantum Systems. Whereas the rst two volumes were dedicated to a detailed exposition of the mathematical techniques and physical concepts relevant in the study of Open S- tems with noapriori pre-requisites, the contributions presented in this volume request from the reader some familiarity with these aspects. Indeed, the material presented here aims at leading the reader already acquainted with the basics in ? quantum statistical mechanics, spectral theory of linear operators,C -dynamical systems, and quantum stochastic differential equations to the front of the current research done on various aspects of Open Quantum Systems. Nevertheless, pe- gogical efforts have been made by the various authors of these notes so that this volume should be essentially self-contained for a reader with minimal previous - posure to the themes listed above. In any case, the reader in need of complements can always turn to these rst two volumes. The topics covered in these lectures notes start with an introduction to n- equilibrium quantum statistical mechanics.
Thermodynamics and Control of Open Quantum Systems
Author: Gershon Kurizki
Publisher: Cambridge University Press
ISBN: 1107175410
Category : Science
Languages : en
Pages : 487
Book Description
The theory of open quantum systems is developed from first principles, and a detailed discussion of real quantum devices is also covered. This unique and self-contained book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.
Publisher: Cambridge University Press
ISBN: 1107175410
Category : Science
Languages : en
Pages : 487
Book Description
The theory of open quantum systems is developed from first principles, and a detailed discussion of real quantum devices is also covered. This unique and self-contained book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.
Open Quantum Systems I
Author: Stéphane Attal
Publisher: Springer
ISBN: 3540339221
Category : Mathematics
Languages : en
Pages : 347
Book Description
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.
Publisher: Springer
ISBN: 3540339221
Category : Mathematics
Languages : en
Pages : 347
Book Description
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.
Semiconductor Quantum Optics
Author: Mackillo Kira
Publisher: Cambridge University Press
ISBN: 1139502514
Category : Science
Languages : en
Pages : 658
Book Description
The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.
Publisher: Cambridge University Press
ISBN: 1139502514
Category : Science
Languages : en
Pages : 658
Book Description
The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.
Open Quantum Systems II
Author: Stéphane Attal
Publisher: Springer Science & Business Media
ISBN: 3540309926
Category : Mathematics
Languages : en
Pages : 254
Book Description
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.
Publisher: Springer Science & Business Media
ISBN: 3540309926
Category : Mathematics
Languages : en
Pages : 254
Book Description
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.